Poster Presentations
(April 9, 2018)

Clonality and Stability

1. Limitations of subcloning as a tool to characterize homogeneity of a cell population
 Hedieh Barkhordarian, Amgen Inc., USA

2. Interrogating cell culture populations for the selection of production cell lines using microfluidic culturing, single cell analysis, and predictive modelling
 Kim Le, Amgen Inc., USA

3. Rethinking clonality using modeling approaches
 Chun Chen, Amgen Inc., USA

4. Tools and methods for providing assurance of clonality for legacy cell lines
 Paul Wu, Bayer HealthCare, USA

5. Variation in karyotype and chromosome numbers in CHO cell lines and subclones
 Nicole Borth, BOKU University, Austrian Center of Industrial Biotechnology, Austria

6. Genomic understanding of clonal variation in recombinant CHO cells
 Gyun Min Lee, KAIST, South Korea

7. Characterisation of Chinese Hamster Ovary (CHO) cells at the single cell level
 Eva Pekle, MedImmune, United Kingdom

8. Population dynamics in cloned CHO cell lines
 Tzihsuan Jennifer Lin, Pfizer Inc., USA

9. The relationship between clonality, cellular heterogeneity, and process consistency
 Jack J. Scarcelli, Pfizer Inc., USA

10. Process improvement delivered by a high efficiency, automated single cell cloning system
 Andrea Gough, Solentim Ltd., United Kingdom

11. Using nanoscale bioreactors to characterize sub-populations of CHO clones and screen transfected pools
 Tanner Nevill, Berkeley Lights, Inc., USA

12. Quantification of genomic DNA repair capabilities in CHO and identification of genes impacting genomic stability
 Philipp N. Spahn, University of California, San Diego, USA

13. Analysis of DNA DSB repair and production stability in CHO cells
 Xiaolin Zhang, University of Delaware, USA

14. Integrated analysis of genomic and epigenomic instability for CHO cell line engineering
 Sofie O’Brien, University of Minnesota, USA
I: Towards Other Cell Lines and Systems

15 The C1 gene expression system, disrupting the way biologic vaccines, and drugs are developed & manufactured
ronen tchelet, Dyadic International Inc, USA

16 Opportunities to leverage cell culture technology to create sustainable food systems: The development of "Clean Meat"
Liz Specht, Good Food Institute, USA

17 Expanding the vector toolkit for complex recombinant protein expression
Peter M. O’Callaghan, Lonza Biologics, USA

18 Identifying Hipk1 as a target of Mir-22-3p enhancing recombinant protein production from Hek 293 by using microarray and Htp sirna screen
Sarah Inwood, National Institutes of Health (NIH), USA

19 spERt Technology: A novel strategy to improve productivity through enhanced polypribosome assembly on the endoplasmic reticulum in CHO cells
Kiyoko Ogawa-Goto, Nippi Research Institute of Biomatrix, Japan

20 Newly established cell lines derived from Chinese hamster for production of biologics
Takeshi Omasa, Osaka University, Japan

21 Improving vaccine production with a serum-free medium for MRC-5 cells
Anna-Barbara Hachmann, Thermo Fisher Scientific, USA

22 Use of a ‘molecular tug’ to overcome limitations in the production of ‘difficult to express' recombinant proteins
Hirra Hussain, University of Manchester, United Kingdom

II: Computational Strategies to Enhance Bioprocess Performance

23 Improving bioreactor design through pH mapping of bioreactors employing Computational Fluid Dynamics coupled with equilibrium calculations
Natraj Ram, AbbVie, USA

24 Empowering manufacturing decisions through process simulation models
Tiffany Rau, BioProcess Technology Consultants, USA

25 Applying genome scale metabolic models integrated with OMICs technologies for improvement of commercial CHO cell culture process
Jianlin Xu, Bristol-Myers Squibb Company, USA

26 Systematic model-driven design of cell culture processes for advanced biomanufacturing
Dong-Yup Lee, BTI, A*STAR, Singapore

27 A bioinformatics approach to genome to phenome predictions in CHO cell lines
Derrick Scott, Delaware State University, USA

28 Multiscale modeling of monoclonal antibody (mAb) production and glycosylation in a CHO cell culture process
Yu Luo, University of Delaware, USA
29 Bioprocess intelligent for the improvements and prediction on fed-batch cell culture in bioreactor
Ching-Jen Yang, Development Center for Biotechnology, Taiwan

30 Development of an in silico molecule assessment method for product expression
Misha Lazebnik, Genentech, Inc., USA

31 Monitoring the production of AAV vectors in insect cells by fluorescence spectroscopy
Daniel Alexandre Marques Pais, Instituto de Biologia Experimental e Tecnológica (iBET), Portugal

32 Towards model-based bioprocess characterization: A mathematical model of cell cycle, metabolism and apoptosis of mAb-producing mammalian cells
António Lima Grilo, Imperial College London, United Kingdom

33 Application of a genome-based predictive CHO model for increased mAb production and Glycosylation control
J. Vincent Price, Janssen Pharmaceutical, USA

34 Model-based predictive control strategy for automated medium refreshments in a perfusion bioreactor for tissue engineering applications
Toon Lambrechts, KU Leuven, Belgium

35 Dynamics of intracellular metabolite pools in MDCK suspension cells during growth and influenza virus infection
Thomas Bissinger, Max Planck Institute for Dynamics of Complex Technical Systems, Germany

36 Application of metabolomics and fluxomics to increase productivity and predict product quality
Neil Templeton, Merck & Co., Inc., USA

37 Characterizing the effect of glutamine supplementation on asparagine and glutamine metabolism using 13C metabolic flux analysis
Sandra V. Bennun, Regeneron Pharmaceuticals Inc., USA

38 Innovative metabolic data integration applicable for Therapeutic Protein Development 2.0
Wolfgang Paul, Roche Diagnostics GmbH, Germany

39 Biologically consistent annotation of CHO cell culture metabolomics data
Nicholas Alden, Tufts University, USA

40 Curation of a CHO DG44 genome scale model and application to support cell culture development process
Cyrielle Calmels, UCB Pharma and Technical University of Denmark, Belgium

41 Filling the gap between experimentalists and modelers by determining a mammalian cell's metabolic capabilities based on transcriptomic data
Anne Richelle, University of California, San Diego, USA

42 A priori optimization of cell culture feeds using metabolic engineering
Nicholas Trunfio, University of Massachusetts Lowell and US Food and Drug Administration, USA
43 Media formulation optimization based on multi-scale modeling of heterogeneity in mammalian cell culture process
Shaun Galbraith, University of Massachusetts Lowell, USA

44 RNA-seq data reveals metabolic regulation in Chinese Hamster Ovary cell culture
Sha Sha, University of Massachusetts Lowell, USA

45 Metabolic pathway engineering in mammalian cells through kinetic model optimization
Conor M. O’Brien, University of Minnesota, USA

46 Epigenetic regulation of gene expression in response to a changing environment in CHO cell batch culture
Heena Dhiman, University of Natural Resources and Life Sciences, Vienna, Austrian Center of Industrial Biotechnology, Austria

47 13C flux analysis in industrial CHO cell culture applications
Jamey Young, Vanderbilt University, USA

III: Advances in Cell Culture Control

48 Controlling continuous high cell density perfusion culture with the Alternating Tangential Flow system in real time using radio-frequency impedance
Aditya Bhat, Aber Instruments Ltd, USA

49 Demonstrating a powerful scale-up strategy for Biosimilar mAb in single use systems via physicochemical and functional characterization
Ozge Can, Acibadem Mehmet Ali Aydinlar University, Turkey

50 Impact of raw materials on sialylation for a therapeutic protein
Wei-Chien Hung, Alexion, USA

51 Delivery of consistent and high-quality antibody therapeutics by actively monitoring and controlling critical quality attributes
Megan Blewis, Amgen Inc., USA

52 Genetic engineering of CHO host cell proteins: Approaches to improve product quality and production processes
Kevin Kayser, MilliporeSigma, USA

53 Modulation of half antibody and aggregate formation in a CHO cell line expressing a bispecific antibody
Natalia Gomez, Amgen, USA

54 Controllability analysis to identify manipulated variables for a glycosylation control strategy
Melissa M. St. Amand, Belcan Corporation, DARPA, USA

55 A novel additive for controlling glycosylation of monoclonal antibodies
Fernie Mitchelson, Biogen, USA

56 Perfusion cell culture: Challenges and potentials between lab and manufacturing scale
Daniel J. Karst, Biogen, Switzerland

57 Process optimization for high volumetric productivity with product quality control
Rashmi Kshirsagar, Biogen, USA
58 Study of an unusually high level of N-glycolylneuraminic acid (NGNA) sialylation on a monoclonal antibody expressed in Chinese hamster ovary cells
Shumin Yang, Boehringer Ingelheim Fremont Inc, USA

59 A Master Cell Bank (MCB) banking troubleshooting case study: Challenges and process improvements with comprehensive root cause analysis
Lianchun Fan, Bristol-Myers Squibb Company, USA

60 Effect of lactate media concentration on induced pluripotent stem cell proliferation and metabolism
Daniel Odenwelder, Clemson University, USA

61 Strategies to modulate charge variants of a Biosimilar monoclonal antibody through cell culture conditions
Prafulla M. Mahajan, Dr.Reddys Laboratories Limited, India

62 Novel bispecific heterodimeric IgG antibody: Upstream process development to increase product purity and titer
Ning Liu, Eli Lilly, USA

63 Generating glycan variants for biological activity testing by means of parallel experimental design and multivariate analysis
David Bruehlmann, EMD Serono, Switzerland

64 A systematic approach for process development and quality control in continuous perfusion cultures
Moritz Wolf, ETH Zurich, Switzerland

65 Genotype of CHO host cell line has higher impact on mAb production and quality than process strategy or cell culture medium
Andreas Castan, GE Healthcare, Sweden

66 Maintaining product quality from early to late stage process development
Jason C. Goodrick, Genentech, Inc., USA

67 Effects of cryopreservation on recombinant CHO cell lines
Inn Yuk, Genentech, Inc., USA

68 Improving glycosylation profiles and cell culture performance with a sensitive cell line in commercial manufacturing
Lisa L. Vulliet, Genentech, Inc., USA

69 Evaluation of Raman spectroscopy for online monitoring of cell culture product quality
Barbara Chiang, Genentech, Inc., USA

70 Using PLS to understand potential sources of process variation & assessing medium components to alter afucosylation
Angela Meier, Genentech, Inc., USA

71 Comprehensive manipulation of glycosylation profiles across development scales
Sven Loebrich, ImmunoGen, USA

72 Controlling fab terminal sialylation of antibodies through culture conditions
Calum McIntosh, Imperial College London, United Kingdom
Elucidating amino acid metabolism in CHO cells
Michael J. Betenbaugh, Johns Hopkins University, USA

Towards a universal CHO reference platform for the biotechnology community
Michael Betenbaugh, Johns Hopkins University, USA

Intact glycopeptide analysis of recombinant protein from CHO cells
Qiong Wang, Johns Hopkins University, USA

Modulation of Mannose levels in N-linked glycosylation through cell culture process conditions in order to increase ADCC activity for an antibody Biosimilar
Shahid Rameez, KBI Biopharma Inc., USA

A highly automated, continuous method for developing active controllers of product quality attributes in early phase clinical development
Brandon Downey, Lonza, USA

Developing integrated platforms for the generation of cell lines expressing bispecific proteins with desired qualities
Jie Zhu, MedImmune/AstraZeneca, USA

Impact of S-sulfocysteine on fragments and trisulfide bond linkages in monoclonal antibodies
Aline Zimmer, Merck KGaA, Germany

Process and raw material control strategies to manage variability in charge variant species of a monoclonal antibody
Vijay Janakiraman, Merck & Co., Inc., USA

Development of a platform expression system using targeted integration in Chinese Hamster Ovary cells
Scott Bahr, MilliporeSigma, USA

Defining scalable cell culture processes for Biosimilar candidates
Carmen Ho, Momenta Pharmaceuticals, USA

Dielectric monitoring of mammalian cells in a bioreactor
Michael Butler, University of Manitoba, Ireland

HIV-1 envelope vaccine production with improved yields and glycosylation profile through mannose supplementation
J. Isaac Godfroy, National Institute of Allergy and Infectious Disease, USA

Control strategies for the regulation of protease clipping during mAb production in CHO cells
Daniel Blackstock, National Institutes of Health (NIH), USA

Assessing the relative impacts of process and metabolic engineering strategies on antibody yield and quality
Yves Durocher, National Research Council Canada, Canada

Novel engineered CHO DG44 host cell line demonstrates lowered UPR, increased titers and superior quality of recombinant vaccines
Hussain Dahodwala, National Institutes of Health (NIH), USA
Monitor and control of multiple bioreactor parameters using in situ raman spectroscopy
Mark Czeterko, Regeneron Pharmaceuticals Inc., USA

Proteolysis of non-IgG molecules in transient HEK293 and stable CHO-K1 bioprocesses
Alfred M. Engel, Roche Diagnostics GmbH, Germany

Implementing automated pCO2 control in small scale cell culture models
Lia Tescione, Sanofi, USA

Bioreactor scale down model case study: Ensuring nutrient feed strategy is representative of clinical and commercial scale
Matthew Leith, Seattle Genetics, USA

Controlling the product quality attributes of a complex recombinant protein in a high cell density perfusion bioreactor process
rahul chelikani, Shire Pharmaceuticals, USA

Controlling Monoclonal Antibody Product Quality using High Throughput Systems (HTS)
Amlan Das, Teva Pharmaceuticals, USA

Comparison of transfection methods on yield of recombinant human IgG1 Fc
Evan Wells, Tulane University, USA

Raman spectroscopic analysis of cell differentiation and death modes
James M. Piret, University of British Columbia, Canada

Proteasome-based selection systems for generation of recombinant CHOK1SV GS-KO™ cell lines with enhanced productivity
Daniel Wan, University of Kent and Lonza Biologics PLC, United Kingdom

Understanding the zinc induced lactate shift in CHO cell culture at transcriptomics level to improve the protein production
Hemlata Bhatia, University of Massachusetts Lowell, USA

Systems engineering N-glycans of recombinant therapeutic proteins
Meghan G. McCann, University of Minnesota, Twin Cities, USA

Antibody charge heterogeneity formation in a mammalian cell culture fed-batch process
Bernhard Sissolak, University of Natural Resources and Life Sciences, Vienna, Austrian Center of Indistrial Biotechnology, Austria

IV: Advanced Cell Culture Processes

Evaluation of redox potential of the Golgi of CHO cells
Laura Palomares, Universidad Nacional Autónoma de México, Mexico

Use of biocapacitance probes for optimized process control at large-scale manufacturing
Christoffer Bro, Biogen, Denmark
Online capacitance probes precisely control cell biomass growth through temperature regulation
Jeffrey Swanberg, Bristol-Myers Squibb Company, USA

Evaluation of bioanalyzers for upstream commercial manufacturing
Pani Apostolidis, Bristol-Myers Squibb Company, USA

Boundary of oxidative and overflow metabolism (boom) controller for CHO cell feed control
Kathryn Elliott, Clemson University, USA

High-density Vero cell perfusion culture in BioBLU 5p Single-Use Vessels
Sebastian Selzer, Eppendor AG Bioprocess Center, Germany

High-throughput screening for best clone manufacturing using scale-down models
Maria Wendt, Genedata AG, Switzerland

Substrate kinetics screening method for mitigating low titer yields at large scale production
Beril Ereren, Genentech, Inc., USA

Increasing efficiency in cell line development through automated workflows
David Shaw, Genentech, Inc., USA

Improving transient gene expression in CHO-EBNA1 cells
Matthew Stuible, National Research Council Canada, Canada

Novel downstream process and analytical tools developed for Influenza VLP vaccine
Patricia Alves, Instituto de Biologia Experimental e Tecnológica (iBET), Portugal

Use of the Cyto-Mine for rapid generation of high-producing clonal cell lines
Kevin D. Smith, Janssen Pharmaceutical, USA

Investigating the use of integrated analytics and automation to enhance process development capabilities
Melisa Carpio, Sartorius Stedim Biotech (2), USA

Transcriptomic signatures classifying CHO quasispecies
Ankita Singh, Technical University of Denmark, Denmark

Development of a CHO production medium utilizing proteomic and metabolomics analysis
Paul Gulde, Thermo Fisher Scientific, USA

Rapid process monitoring & control in mammalian cell culture using off-gas mass spectrometry analysis
Hai-Yuan Goh, University College London, United Kingdom

V: Regulatory Strategies and Concerns

Enrichment of CHO cells with higher productivity using Fluorescence Activated Cell Sorting (FACS): Comparison of two approaches
stephanie Rieder, AbbVie, USA
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>Strategies to improve productivity of CHO-S cells expressing an anti-TNFα monoclonal antibody with biosimilar potential</td>
<td>Ana M. Moro, Instituto Butantan, Brazil</td>
</tr>
<tr>
<td>118</td>
<td>VI: Pushing the Limits on Process Intensification</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Getting more for less: Leveraging epigenetics to increase process yield</td>
<td>Chris Kwiatkowski, Biogen, USA</td>
</tr>
<tr>
<td>119</td>
<td>Product sieving challenges in TFF perfusion cell culture</td>
<td>Marcella Yu, Boehringer Ingelheim, USA</td>
</tr>
<tr>
<td>120</td>
<td>Dipeptides in cell culture - Tools for performance increase and risk reduction</td>
<td>Christian Kessler, Evonik Nutrition & Care GmbH, Germany</td>
</tr>
<tr>
<td>121</td>
<td>Mammalian cell perfusion cultures: “Intensification by growth inhibition”</td>
<td>Moritz Wolf, ETH Zurich, Switzerland</td>
</tr>
<tr>
<td>122</td>
<td>Evaluation of IRES-mediated expression and different signal peptides for the development of CHO clones producing an anti-PCSK9 monoclonal antibody</td>
<td>Thayana Araujo da Cruz, PEQ/COPPE/UFRJ, IQ/UFRJ, Brazil</td>
</tr>
<tr>
<td>123</td>
<td>Development of perfusion processes for mAb production aiming at high cell densities sustained by low cell-specific perfusion rates</td>
<td>Renata Alvim, Leda Castilho, Federal University of Rio de Janeiro (UFRJ), Brazil</td>
</tr>
<tr>
<td>124</td>
<td>Platform based screening strategies that deliver reliable and high quality continuous biomanufacturing processes</td>
<td>Leon Pybus, FUJIFILM Diosynth Biotechnologies, United Kingdom</td>
</tr>
<tr>
<td>125</td>
<td>Process intensification: Case studies with a CHO-based monoclonal antibody production process</td>
<td>Isam A. Hararah, Genentech, Inc., USA</td>
</tr>
<tr>
<td>126</td>
<td>Rapid and flexible scale-down media development and optimization for perfusion culture</td>
<td>James Kevin Y. Tan, Irvine Scientific, USA</td>
</tr>
<tr>
<td>127</td>
<td>Development of a chemically defined medium for optimal growth and recombinant protein production in HEK293 cells</td>
<td>Chaya Kataru, Kerry, USA</td>
</tr>
<tr>
<td>128</td>
<td>Implications of feeds and supplements on the productivity and quality of recombinant proteins produced in CHO cells</td>
<td>John F. Menton, Kerry, USA</td>
</tr>
<tr>
<td>129</td>
<td>Evolution of TFF-based perfusion: A path towards non product sieving and direct chromatography integration</td>
<td>Nuno D. S. Pinto, Merck & Co., Inc., USA</td>
</tr>
<tr>
<td>130</td>
<td>Cellular behavior in high density perfusion processes</td>
<td>Delia Lyons, MilliporeSigma, USA</td>
</tr>
<tr>
<td>131</td>
<td>Hybrid fed-batch cultures using XCell ATF for better yield and robust clarification process</td>
<td>Shashi Kudugunti, Repligen, USA</td>
</tr>
</tbody>
</table>
Evaluation of an n-1 perfusion/high-seed fed-batch technology for the intensification of recombinant protein production processes: From AMBR250 to 200 L STR
Daniel Vazquez Ramirez, Sanofi, Germany

Optimization and evaluation of perfusion media in high cell density mammalian cell culture systems
Yang Wang, Thermo Fisher Scientific, USA

VII: Innovation in Cell and Gene Therapies

Producer cell line engineering for large volume manufacturing of therapeutic Aav
Chapman Wright, Biogen, USA

TBD
Alicia D. Henn, BioSpherix, USA

Generation of helper virus-free adeno-associated viral vector packaging/producer cell lines based on a human suspension cell line
Kerstin Hein, CEVEC Pharmaceuticals, Germany

Bioprocess optimization for the expansion of early memory T cells in serum-free conditions
Ernesto Scibona, ETH Zurich, Switzerland

Heterotypic cell-cell interaction of human stem cells for neural differentiation of hybrid spheroids
liqing Song, Florida State University, USA

Metabolic regulation of functional decline during in vitro expansion of human mesenchymal stem cells
Xuegang Yuan, Florida State University, USA

Engineering culture environment of human pluripotent stem cells to direct their commitment and maturation towards functional cardiomyocytes: An “-Oomics” driven approach
Margarida Serra, Instituto de Biologia Experimental e Tecnológica (iBET), Portugal

Scalable lentiviral vector production using stable producer cell lines in perfusion mode
Sven Ansorge, National Research Council, Canada

Quantitative characterization of all single amino acid variants of a viral capsid-based delivery vehicle
Danielle Tullman-Ercek, Northwestern University, USA

Evaluating a gas-permeable culture surface for the generation of megakaryocytes for in-vitro platelet production
Andres Martinez, Northwestern University, USA

Optimization of human T cell expansion ex vivo using serum-free medium and the gas-permeable rapid expansion cell culture devices (G-Rex)
Evan R. Zynda, Thermo Fisher Scientific, USA

Engineering of exosomes for targeted delivery of therapeutic microRNAs
Nadja Raab, Biberach University of Applied Sciences, Germany
Megakaryocytic microparticles-mediated nucleic acid delivery for gene therapy
Chen-Yuan Kao, University of Delaware, USA

VIII: Impact of Novel Gene Editing Approaches

CRISPR-Cas9 mediated cell line engineering of apoptosis pathways increases antibody expression with site-specific modifications for antibody drug conjugation
Yingchun Lu, Ambrx, USA

Challenges in cell culture platform development of mAb production with site-specific incorporation of non-natural amino acid for ADC generation
Weimin Lin, Ambrx, USA

Novel transposase tools for cell-line engineering
Ferenc Boldog, ATUM (formerly DNA2.0), USA

Dxb11/taut host cell engineering strategy enabling the establishment of strains producing the highest yield of advanced recycling antibodies
Hisahiro Tabuchi, Chugai Pharmaceutical Co., Ltd., Japan

Development of high-producing CHO cell lines through target-designed strategy
Dalton Chen, Development Center for Biotechnology, Taiwan

High-yield antibody production using targeted integration and engineering CHO host
Wei-Kuang Chi, Development Center for Biotechnology, Taiwan

High throughput screening identifies novel, cell cycle-arresting small molecule enhancers of transient protein expression
Athena Wong, Genentech, Inc., USA

Evolution of rCHO cells under mild ER stress to make them super producers
Sarika Mehra, IIT Bombay, India

Overexpression of the mitochondrial pyruvate carrier increases CHO cell and recombinant protein productivity and reduces lactate production
Dubhe Bulté, Universidad Nacional Autónoma de México, Mexico

Rolling cycle translation of circularized infinite open reading frames; fooling the ribosome
Alan Costello, Dublin City University, Ireland

CRISPR/Cas9 mediated targeting of microRNA-24 improves the bioprocess phenotype of Chinese Hamster Ovary cells
Niamh Keogh, The National Institute for Bioprocessing Research and Training (NIBRT), Ireland

Elimination of the Warburg effect in Chinese hamster ovary (CHO) cells improves cell phenotype as a protein production platform
Hooman Hefzi, Novo Nordisk Foundation Center for Biosustainability and University of California, San Diego, USA

Metabolic engineering of CHO cells towards reduced novel growth inhibitor production and amino acid prototropy
Bhanu Chandra Mulukutla, Pfizer Inc., USA
Towards a genome-wide CRISPR/Cas9 knockout screening platform for CHO cells
Helene Fastrup Kildegaard, Technical University of Denmark, Denmark

Targeted epigenetic glyco-engineering in CHO cells
Nicolas Marx, University of Natural Resources and Life Sciences, Vienna, Austrian Center of Industrial Biotechnology, Austria

Enhancement by reduction - Pushing the N-glycosylation capacity of CHO cells by cleaning up the Golgi
Nina Bydlinski, University of Natural Resources and Life Sciences, Vienna, Austrian Center of Industrial Biotechnology, Austria

IX: Process Scale Up/Down, Characterization and Control Strategy Definition

Improving developmental timelines through the generation of predictive scale down models
Nicholas Abu-Abasi, AbbVie, USA

Upstream process development and scale-up of complex glycoprotein production using a long duration perfusion process
Adriane Schilling, Amicus Therapeutics, USA

A systematic approach to implement HTST for legacy mammalian cell culture processes
LiYing Yang, AstraZeneca, USA

On-line monitoring and controlling of cell apoptosis in mammalian cell culture processes using dielectric spectroscopy
An Zhang, Biogen, USA

Leveraging a deeper understanding of Poloxamer188 to improve cell culture processes
Kevin Chang, Biogen, USA

Assessing scale risk and building success within a partnership
Erik Hughes, Biogen, USA

Enhancing and enabling advanced process controls - reducing variability at the source
Mats Akesson, Biogen, Denmark

Overcoming scale-up challenges for a First-In-Human (FIH) antibody production process at the 2000L scale: Successful optimization of bioreactor equipment and harvest conditions to improve process performance and product yield
Meena George, Boehringer Ingelheim Fremont Inc, USA

Making large scale processes transparent – The application of CFD and classical engineering approaches to mitigate risk during cell culture process transfer
Thomas Wucherpfennig, Boehringer Ingelheim Pharma GmbH & Co. KG, Germany

Use of the ambr 250 to enable rapid clone selection and process development for large scale manufacturing processes
Colleen Clark, Bristol-Myers Squibb Company, USA
173 Development and qualification of a scale-down model of a commercial mammalian cell culture bioreactor using Computational Fluid Dynamics
Brianna Biscardi, Bristol-Myers Squibb Company, USA

174 Step-wise strategy to address process characterization - Toward the definition of a standardized approach
Claudia Berdugo, Catalent, USA

175 Suspension culture of Pk15 cells for veterinary antigen production
Ziomara P. Gerdtzen, University of Chile, Chile

176 Development of a highly efficient and flexible media system for CHO fed-batch culture
Yang Li, Celgene, USA

177 Integration of CHO cell culture process improvements with continued process verification
Jun Luo, Genentech, Inc., USA

178 Technical assessment approach for vendor initiated changes of direct materials
Eric Huang, Genentech, Inc., USA

179 Cell culture manufacturing of accelerated projects - Lessons from life in the fast lane
Kyle Hirst, Genentech, Inc., USA

180 Process characterization for an updated legacy product
Sharat Varma, Genentech, Inc., USA

181 Characterization and control of culture media and buffer preparation processes: Closing the gap
Wayne Mauro, Irvine Scientific, USA

182 Reduced scale model qualification of a 5-L bioreactor using multivariate visualization & Bayesian inferential methods
Kevin Clark, Janssen Pharmaceutical, USA

183 Bioreactor process optimization of the ambr15 for an IgG producing CHO cell line
Michael Gillmeister, Lonza, USA

184 The EB66® cell line for yellow fever vaccine production at high cell concentrations
Alexander Nikolay, Max Planck Institute for Dynamics of Complex Technical Systems, Germany

185 Understanding elevated lactate level in a large-scale perfusion process to improve performance
Peter Amaya, MedImmune, USA

186 Impact of mixing and aeration on cell culture performance and quality
Pooja Jambunathan, Merck & Co., Inc., USA

187 Experiences and challenges during the commercialization of a licensed-in monoclonal antibody
Robert W. Leighty, Merck & Co., Inc., USA

188 Characterization of a non-originator NISTmAb expression system
Lila Kashi, NIST, IBBR, USA
A combinatorial use of titer and titer normalized to confluence as early reporters allows for selecting Chinese Hamster Ovary cell clones with high volumetric productivity of Etanercept
Nusa Pristovsek, Novo Nordisk Foundation Center for Biosustainability, Denmark

Establishing a small scale model with MULTIVARIATE and bayesian statistics
Peter Slade, Pfizer Inc., USA

CFD applications in bioreactor development and strategies for scaling up and down
Einer DosSantos, Regeneron Pharmaceuticals Inc., USA

Off-target at-scale Scale Down Model verification of a marketed biopharmaceutical
Markus Emmler, Roche Diagnostics GmbH, Germany

Elimination of Fetal Calf Serum (FCS) in industrial cell culture media for manufacturing of diagnostic Anti-bodies
Marco Jenzsch, Roche Diagnostics GmbH, Germany

Carbon dioxide driven pH reference method for transfer and scaling of fermentation processes
Christian Klinger, Roche Diagnostics GmbH, Germany

Scale-down high-throughput perfusion development with ambr 250
Jarno Robin, Sanofi, France

Overcoming manufacturing challenges for an early phase development program
Yang Yang, Shire Pharmaceuticals, USA

Clone selection and process lever optimization using an AMBR® 15 system for conversion of a roller bottle process to a suspension, perfusion bioreactor platform
Seshu Tummala, Shire Pharmaceuticals, USA

The relevance of cell size in a CHO fed batch process: Metabolic and transcriptomic characterization
Dirk Martens, Wageningen University, Netherlands

The journey from tech transfer to BLA submission: Case study of a NS0 cell culture process from 2000L stainless steel bioreactor to 2000L disposable bioreactor
Jincai Li, WuXi Biologics, China

Rapid protein production using CHO cells: From transfection to 100g in 6 weeks
Jill Cai, WuXi Biologics, China

Fast predictive expression platform – CHO-K1 with transposase
Bram D. Estes, Amgen Inc., USA

Sanofi in-house medium: Exceeding expectations in cell line development as an alternative to commercially available basal medium
Christine DeMaria, Sanofi, USA

Development of a novel high-throughput platform for efficient perfusion-based cell culture process development
Thomas Gagliardi, Shire Pharmaceuticals, USA
A reference genome for the Chinese hamster based on a hybrid assembly strategy
Kelvin H. Lee, University of Delaware, USA