Integrate Continuous Biomanufacturing II

November 1-5, 2015
The Claremont
Berkeley, California, USA

Poster Presentations
(October 5, 2015)

Analytics & Control

1. Spectral deconvolution of chromatograms without offline analytics
 Matthias Rüdt, Karlsruhe Institut für Technologie, Germany

2. PAT concepts for the process monitoring and control of continuous biomanufacturing
 Eike Zimmermann, Boehringer-Ingelheim, USA

3. Inline spiking for viral clearance validation of continuous processes
 Herb Lutz, Emd Millipore, USA

4. Suitability of select in-line single-use sensors for PAT in continuous processing
 James Furey, PendoTECH, USA

5. Advanced computational tools to enhance continuous monoclonal antibody production
 Maria M. Papathanasiou, Imperial College London, United Kingdom

6. Optical enzymatic sensors for continuous monitoring of bioreactors
 Kenneth F. Reardon, Colorado State University, USA

7. Optimal control of a continuous bioreactor for maximized beta-carotene production
 M. Nazmul Karim, Texas A&M University, USA

8. Strategy for scaling semi-continuous downstream and integration of process analytical tools for monoclonal antibody toxicology
 Darshini Shah, Merck Research Laboratories, USA

Integrated Processes

9. Continuous production of proteins: Integration of polishing using MCSGP
 Fabian Steinebach, ETH Zurich, Switzerland

10. Process time and cost savings achieved through automation and islands of integration in existing facilities.
 Lynne Frick, Pall Life Sciences, United Kingdom

11. Tools for process intensification upstream and continuous processing downstream
 James Rusche, Repligen Corporation, USA

12. Integrated solutions for continuous processing in Mobius® bioreactor systems
 Andrew Clutterbuck, Merck Millipore, France
13. Laboratory scale continuous linear purification as a development tool for recombinant blood protein processing, using chromatographic resins and membranes
 Rimenys J. Carvalho, Federal University of Rio De Janeiro, Brazil

14. Integrated and single use continuous manufacturing
 Atul Mohindra, Lonza, United Kingdom

15. Enabling technologies for integrated / continuous downstream processing of biologics
 Jeff Salm, Pfizer, USA

Process Technologies

16. Design criteria and requirements for development of perfusion media
 Jochen B. Sieck, Merck KGaA, Germany

17. GlycoExpress: A toolbox for the high yield production of glycooptimized fully human biopharmaceuticals in perfusion bioreactors at different scales
 Steffen Kreye, Glycotope GmbH, Germany

18. Genomics based methodology of cell-culture media formulation for improved biotherapeutic productivity and quality consistency
 Hemlata Hemlata, University of Massachusetts, Lowell, USA

19. Novel compact cell settlers for continuous perfusion bioreactor cultures of microbial (and mammalian) cells
 Dhinakar Kompala, Sudhin Biopharma Company, USA

20. Continuous countercurrent tangential chromatography for purification of high value therapeutic proteins
 Andrew Zydney, The Pennsylvania State University, USA

21. Factors affecting the productivity of 4-Column Periodic Counter Current Chromatography (4C-PCC)
 Laura Fagan, Actavis Biologics Ltd., United Kingdom

22. Experimental and computational studies on continuous SMB chromatography of protein mixtures
 Ajoy Velayudhan, University College London, United Kingdom

23. Monitoring intracellular component pools to identify steady state in mammalian cell perfusion culture
 Daniel Karst, ETH Zurich, Switzerland

24. Simple method transfer from batch to continuous chromatography process to fit parameters to business needs
 Rene Gantier, Pall Life Sciences, USA

25. EcoPrime twin – Scale-up of CaptureSMB to the process scale
 Kathleen Mihlbachler, LEWA Process Technologies, USA

26. A novel plant cell culture platform for semicontinuous production of recombinant proteins: Butyrylcholinesterase as a case study
 Karen A. McDonald, University of California, Davis, USA
27. Case study: Optimisation of a stabilised large scale atf perfusion process
 Jarno Robin, Novo Nordisk, Denmark

28. Evaluation of a continuous chromatography process through process modeling and resin characterization
 Ketki Behere, University of Mass Lowell, USA

29. Developing a scale down model for high density perfusion bioprocess
 Haofan Peng, Biogen, USA

30. Comparison of bioreactor systems operated at high bacterial cell density for the production of lactic acid: Batch – CSTR – CSTR cascade – Tubular reactor
 Ulrich Kulozik, Technische Universitaet Muenchen, Germany

31. Scale up and implementation of a high density long-term perfusion suspension cell culture in a 250L single use bioreactor
 Weichang Zhou, WuXi AppTec Co., Ltd, China

32. BioSC® predict simulation software: FLEXibility and optimization of your multi-column process
 Fabien Rousset, Novasep, France

33. Mathematical modeling of a bioreactor producing Epo-hr operating in perfusion mode
 Osmán Fernández, Center of Molecular Immunology, Cuba

34. Efficient approaches for perfusion medium development
 Andreas Castan, GE Healthcare Life Sciences, Sweden

35. Continuous production of viral vaccines with a two-stage bioreactor system
 Felipe Tapia, Max Planck Institute Magdeburg, Germany

36. Continuous downstream processing of a monoclonal antibody using Periodic Counter Current Chromatography (PCC) and Straight Through Processing (STP)
 Hans Blom, GE Healthcare, Sweden

37. Bioprocess economics and optimization of continuous and pre-packed disposable chromatography
 Richard Allmendinger, University College London, United Kingdom

38. Modeling perfusion at small scale using ambr15
 Delia Lyons, SAFC, USA

39. Evaluation of novel CEX resin for continuous processing of MAb purification
 Takuya Muramoto, Takeda Pharmaceutical Company Limited, Japan

40. Designing a microbial cultivation platform for continuous biopharmaceutical production
 Nicholas J. Mozdzierz, Massachusetts Institute of Technology, USA

41. Continuous purification of hepatitis C virus-like particles by multi-column chromatography
 José Mota, FCT-UNL, Portugal

42. BHK cells physiological response to spin-filter stress condition
 Aldo Tonso, University of Sao Paulo, Brazil
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Author(s)</th>
<th>Institution/Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>mAb product consistency achieved in long duration microfiltration-based CHO perfusion process</td>
<td>Douglas Rank, EMD Millipore, USA</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Design of a continuous precipitation operation for protein capture</td>
<td>Todd Przybycien, Carnegie Mellon University, USA</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Biopharmaceutical capacity planning for batch and semi-continuous bioprocesses under various strategic criteria</td>
<td>Cyrus Siganporia, University College London, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Salt-tolerant cation exchange HD-Sb hydrogel membrane: mAb purification performance in flowthrough mode</td>
<td>Annabel Shang, Natrix Separations Inc, Canada</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Toward complete continuity in antibody biomanufacture: Multi-column continuous chromatography for Protein A capture and mixed mode hydroxyapatite polishing</td>
<td>Anthony C. Grabski, Semba Biosciences, Inc., USA</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Continuous culture in the age of single-use</td>
<td>Christel Fenge, Sartorius Stedim Biotech, Germany</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Alternating flow filtration as an alternative to internal spin filter based perfusion process: Impact on productivity and product quality</td>
<td>Guillermina Forno, Universidad Nacional Del Litoral, Argentina</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Pilot scale hybrid fed batch and continuous processing of biologics</td>
<td>Dave Sullivan, Pfizer, USA</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>From fed-batch to perfusion: Productivity and quality considerations for a late-stage program</td>
<td>Sen Xu, Merck Research Laboratories, USA</td>
<td></td>
</tr>
</tbody>
</table>