Program

Carbon-Based Nano-Materials and Devices

October 16-21, 2011
Suzhou, China

Conference Chair
Prof. Shuit-Tong Lee
Chair Professor of Materials Science; Director, Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, China
Director, COSDAF City University of Hong Kong, Hong Kong SAR, China
Director, Nano-organic Photoelectronic Laboratory, Technical Institute of Physics and Chemistry

Co-Chairs
Dr. Orlando Auciello, Argonne National Laboratory, USA
Dr. Masataka Hasegawa, Research Center for Advanced Carbon Materials, AIST, Japan
Prof. Kian Ping Loh, National University of Singapore, Singapore
Prof. Robert J. Nemanich, Arizona State University
Prof. Martin Stutzmann, Walter Schottky Institute, TU Munich, Germany
Engineering Conferences International (ECI) is a not-for-profit global engineering conferences program, originally established in 1962, that provides opportunities for the exploration of problems and issues of concern to engineers and scientists from many disciplines.

ECI BOARD MEMBERS

Barry C. Buckland, President
 Peter Gray
 Michael King
 Raymond McCabe
 David Robinson
 Jules Routbort
 William Sachs
 Eugene Schaefer
 P. Somasundaran
 Deborah Wiley

Chair of ECI Conferences Committee: William Sachs

ECI Technical Liaison for this conference: Nghi Lam

ECI Executive Director: Barbara K. Hickernell

ECI Associate Director: Kevin M. Korpics

© Engineering Conferences International
Sunday, October 16, 2011

16:00 – 18:00 Registration (No. 5 Building)

18:00 – 19:30 Welcome Reception (Yijiangnan café)

Notes

- **Breakfasts and dinners will be served in the Yijiangnan café.**
- **Lunches will be served in the Lotus Pavilion.**
- **The conference banquet will be in the Fei Quang Room.**
- **Technical sessions and poster sessions will be in the Baiyun room.**
- **Audiotaping, videotaping and photography of presentations are prohibited.**
- **Speakers – Please have your presentation loaded onto the conference computer prior to the session start (preferably the day before).**
- **Speakers – Please leave at least 3-5 minutes for questions and discussion.**
- **Please do not smoke at any conference functions.**
- **Turn your mobile telephones to vibrate or off during technical sessions.**
- **Be sure to make any corrections to your name/contact information on the Master Participant List or confirm (by your initials) that the listing is correct. A corrected copy will be sent to all participants after the conference.**
Monday, October 17, 2011

07:00 – 08:15 Breakfast

08:15 – 08:30 Conference Welcome
Shuit-Tong Lee, Conference Chair
Nghi Lam, ECI Technical Liaison

Session 1: Organic Electronics and Optoelectronics – 1
Session Chairs: Chihaya Adachi; Yu-Tai Tao

08:30 – 09:00 Keynote Presentation: Karl Leo, TU Dresden, Germany
HIGHLY EFFICIENT ORGANIC DEVICES

09:00 – 09:30 Keynote Presentation: Nobuo Ueno, Chiba University, Japan
MECHANISM OF THE ENERGY LEVEL ALIGNMENT AND BAND BENDING IN ORGANIC DEVICES: WHY DOES THE FERMI LEVEL MOVE IN THE HOMO-LUMO GAP?

09:30 - 09.55 Invited Presentation: Dongge Ma, Chinese Academy of Sciences, China
WHITE ORGANIC LIGHT-EMITTING DIODES FOR LIGHTING

09:55 – 10:15 Coffee break

Session 2: Organic Electronics and Optoelectronics – 2
Session Chairs: Karl Leo; Nobuo Ueno

10:15 – 10:45 Keynote Presentation: Chihaya Adachi, Kyushu University, Japan
NOVEL CATEGORIES OF ORGANIC LUMINESCENT MATERIALS USEFUL FOR ELECTROLUMINESCENCE

10:45 – 11:10 Invited Presentation: Wai-Yeung Wong, Hong Kong Baptist University, Hong Kong
ORGANOMETALLICS FOR ENERGY CONVERSION IN SOLAR CELLS AND OLEDS

11:10 – 11:35 Invited Presentation: Yuguang Ma, Jilin University, China
CONSTRUCT THE FUNCTIONAL MOLECULAR CRYSTALS AND APPLIED IN LUMINESCENT AND LASER DEVICES

11:35 – 12:00 Invited Presentation: A. L. Roy Vellaisamy, City University of Hong Kong, Hong Kong
SOLUTION PROCESSED CONJUGATED MATERIALS FOR ORGANIC PHOTOVOLTAIC DEVICES

12:00 – 14:00 Lunch

Session 3: Graphene Physics and Chemistry - 1
Session Chairs: Shihe Yang; Lifeng Chi

14:00 – 14:30 Keynote Presentation: Steven G. Louie, University of California at Berkeley, USA
NOVEL ELECTRONIC AND OPTICAL PROPERTIES OF GRAPHENE AND GRAPHENE NANOSTRUCTURES
14:30 - 14:55
Invited Presentation: Yunqi Liu, Chinese Academy of Sciences, China
SYNTHESIS OF GRAPHENE AND ITS APPLICATIONS IN ELECTRONICS

14:55 - 15:20
Invited Presentation: Yongsheng Chen, Nankai University, China
SOLUTION-PROCESSED GRAPHENE MATERIALS FOR ALL-CARBON ELECTRONICS

15:20 - 15:40
Contributed Presentation: Haibing Peng, University of Houston, USA
PROBING PHONON EMISSION VIA HOT CARRIER TRANSPORT IN SUSPENDED GRAPHITIC MULTILAYERS

15:40 - 16:00
Coffee Break

16:00 - 16:25
Invited Presentation: Shihe Yang, Hong Kong Univ. of Science and Technology, Hong Kong
ASSEMBLY, MODIFICATION, HYBRIDIZATION AND FUNCTIONALIZATION OF GRAPHENE OXIDES

16:25 - 16:50
Invited Presentation: Huiming Cheng (Wencai Ren representing), Chinese Academy of Sciences, China
THREE-DIMENSIONAL INTERCONNECTED GRAPHENE FOAMS AND THEIR COMPOSITES

16:50 - 17:10
Contributed Presentation: Mingsheng Xu, Zhejiang University, China
NOVEL SYNTHESIS OF SINGLE-LAYER GRAPHENE AND DISPERSIBLE GRAPHENE DECORATED WITH UNIFORM Au NANOPARTICLES

17:10 - 17:30
Contributed Presentation: Hrudya Nair, University of Twente, The Netherlands
CONTROL OF WETTABILITY ON CARBON-NANOFIBER SURFACES: FROM HYDROPHILICITY TO SUPERHYDROPHOBICITY

18:00 – 19:30
Dinner

19:30 – 20:30
Social Hour
Tuesday, October 18, 2011

07:00 – 08:30 Breakfast

Session 5: Organic Electronics and Optoelectronics – 3
Session Chairs: Hisao Ishii; Dongge Ma

08:30 - 09:00 *Keynote Presentation*: Hagen Klauk, Max Plank Institute, Germany
LOW-VOLTAGE ORGANIC THIN-FILM TRANSISTORS AND CIRCUITS FOR FLEXIBLE ELECTRONICS

09:00 - 09:30 *Keynote Presentation*: Jun Takeya, Osaka University, Japan
HIGH-PERFORMANCE PRINTED ORGANIC TRANSISTORS

09:30 - 09:55 *Invited Presentation*: Yu-Tai Tao, Academia Sinica, Taiwan
ORGANIC FIELD EFFECT TRANSISTORS WITH PENTACENE FILMS EMBEDDING METALLIC AND ORGANIC NANOCLUSTERS AS CHARGE TRAPPING SITES: STRUCTURE AND ELECTRIC BISTABILITY STUDY

09:55 - 10:20 *Invited Presentation*: Ye Tao, National Research Council of Canada, Canada
MATERIALS ENGINEERING AND NANOSTRUCTURE CONTROL FOR HIGH EFFICIENCY POLYMER SOLAR CELLS

10:20 – 10:40 Coffee break

Session 6: Graphene Physics and Chemistry – 3
Session Chairs: Hagen Klauk; Jun Takeya

10:40 - 11:10 *Keynote Presentation*: Kian Ping Loh, National University of Singapore, Singapore
MAKING NANOGRAPHENE

11:10 - 11:35 *Invited Presentation*: Lifeng Chi, University of Muenster, Germany
STUDIES ON ELECTRONIC STRUCTURES OF ORIENTATED GRAPHENE NANORIBBONS

11:35 - 11:55 *Contributed Presentation*: Eyassu Woldesenbet, Louisiana State University and Southern University, USA
SYNTHESIS OF CARBON NANOFIBER PAPER USING CHEMICAL VAPOR DEPOSITION METHOD

11:55 – 14:00 Lunch

Session 7: Advanced Characterization for Carbon Nano-Materials
Session Chairs: Chwee Teck Lim; Zhuang Liu

14:00 - 14:30 *Keynote Presentation*: Tsun Kong Sham, University of Western Ontario, Canada
SYNCHROTRON SPECTROSCOPY FOR THE ANALYSIS OF CARBON-BASED NANOMATERIALS
Tuesday, October 18, 2011 (continued)

14:30 - 14:55
Invited Presentation: Jinghua Guo, Lawrence Berkeley National Lab, USA
INTERFACE SCIENCE IN NANOSTRUCTURED CARBON-BASED MATERIALS: AN ELECTRONIC STRUCTURE VIEW OF SOFT X-RAY SPECTROSCOPY

14:55 - 15:20
Invited Presentation: Hisao Ishii, Chiba University, Japan
ELECTRONIC STRUCTURES OF ORGANIC SEMICONDUCTORS STUDIED BY PHOTOELECTRON YIELD SPECTROSCOPY: FROM SINGLE CRYSTAL TO LIQUID DEVICE

15:20 - 15:40
Contributed Presentation: Alina Veligura, University of Groningen, The Netherlands
QUANTIZED CONDUCTANCE OF A SUSPENDED GRAPHENE NANOCONSTRUNCTION

15:40 - 16:00
Coffee Break

Session 8: Graphene Applications – 1
Session Chairs: Tsun Kong Sham; Jinghua Guo

16:00 - 16:25
Invited Presentation: Chwee Teck Lim, National Univ. of Singapore, Singapore
CHEMICAL AND STRUCTURAL ROLES OF GRAPHENE IN STEM CELL GROWTH AND DIFFERENTIATION

16:25 - 16:50
Invited Presentation: Zhuang Liu, Soochow University, China
CARBON NANOTUBES AND GRAPHENE FOR DRUG DELIVERY AND CANCER THERAPIES

16:50 - 17:10
Contributed Presentation: Jignasa Solanki, S. V. National Institute of Tech., India
RECENT ADVANCES IN THE APPLICATIONS OF CARBON BASED NANOMATERIALS

17:10 - 17:30
Contributed Presentation: Priscilla Kailian Ang, National University of Singapore, Singapore
GRAPHENE-BASED MICROFLUIDIC DEVICE FOR SINGLE CELL DETECTION

17:30 - 17:50
Contributed Presentation: Qiaoliang Bao, National Univ. of Singapore, Singapore
GRAPHENE PHOTONICS: LIGHT CREATION, MODULATION AND DETECTION

18:00 – 19:30
Dinner

19:30 – 21:00
Poster Session and Social Hour
Wednesday, October 19, 2011

07:00 – 08:30 Breakfast

Session 9: Carbon Nanotubes and Applications – 1
Session Chairs: Esko I. Kauppinen; Xuhui Sun

08:30 - 09:00 *Keynote Presentation*: Cheol Jin Lee, Korea University, Korea
FIELD EMISSION FROM CARBON NANOTUBES

09:00 - 09:25 *Invited Presentation*: Xuhui Sun, Soochow University, China
CONTACT RESISTANCES STUDY OF CARBON NANOTUBE VIA INTERCONNECTS GROWN UNDER VARIOUS CONDITIONS

09:25 - 09:50 *Invited Presentation*: Danilo Demarchi, Politecnico di Torino, Italy
A CNT BASED DEVICE FOR ELECTROCHEMILUMINESCENCE SENSING

09:50 - 10:10 *Contributed Presentation*: Magdalena Birowska, University of Warsaw, Poland
STABILITY AND ELECTRONIC PROPERTIES OF FUNCTIONALIZED CARBON NANOTUBES AND GRAPHENE LAYERS

10:10 – 10:30 Coffee break

Session 10: Carbon Nanotubes and Applications – 2
Session Chairs: Cheol Jin Lee; Danilo Demarchi

10:30 - 11:00 *Keynote Presentation*: M. Meyyappan (Xuhui Sun representing), NASA Ames Research Center, USA
CARBON NANOTUBE BASED CHEMICAL AND BIOSENSORS

11:00 - 11:25 *Invited Presentation*: Esko I. Kauppinen, Aalto University, Finland
FLOATING CATALYST SYNTHESIS AND DRY DEPOSITION OF CARBON NANOTUBES FOR THIN FILM FLEXIBLE ELECTRONICS APPLICATIONS

11:25 - 11:45 *Contributed Presentation*: Karolina Milowska, University of Warsaw, Poland
AB INITIO STUDIES OF ELASTIC PROPERTIES OF FUNCTIONALIZED CARBON NANOTUBES AND GRAPHENE LAYERS

11:45 – 13:00 Lunch

13:00 – 18:30 Free time / Optional excursions and sightseeing

18:30 – 20:00 Dinner

20:00 – 21:00 Social Hour
Thursday, October 20, 2011

07:00 – 08:30 Breakfast

Session 11: Nano-Diamond and Applications – 1
Session Chairs: Milos Nesladek; Yasuo Koide

08:30 - 09:00 *Keynote Presentation*: Orlando Auciello, Argonne National Laboratory, USA
SCIENCE AND TECHNOLOGY OF ULTRANANOCRYSTALLINE DIAMOND FILMS FOR APPLICATION TO MULTIFUNCTIONAL SYSTEM COMPONENTS AND DEVICES

09:00 - 09:30 *Keynote Presentation*: Masataka Hasegawa, AIST Nanotube Research Center, Japan
NANOCRYSTALLINE DIAMOND GROWTH IN A SURFACE-WAVE PLASMA

09:30 - 09:55 *Invited Presentation*: Erhard Kohn, Ulm University, Germany
DIAMOND IN NITRIDE ELECTRONICS

09:55 - 10:20 Invited Presentation: James Rabeau, Macquarie University, Australia
NITROGEN VACANCY CENTERS IN NANO-SCALE DIAMONDS

10:20 – 10:40 Coffee break

Session 12: Nano-Diamond and Applications – 2
Session Chairs: Orlando Auciello; Masataka Hasegawa

10:40 - 11:10 *Keynote Presentation*: Milos Nesladek, Hasselt University, Belgium
NOVEL BIOMOLECULAR DETECTION PRINCIPLES IN LIQUID ENVIRONMENT USING NANODIAMOND PARTICLES FOR CHEMICALLY-INDUCED LUMINESCENCE SWITCHING

11:10 - 11:35 *Invited Presentation*: Yasuo Koide, National Institute for Materials Science, Japan
DEEP-DOPANT EFFECT FOR DIAMOND ULTRAVIOLET SENSOR

11:35 - 12:00 *Invited Presentation*: J. C. Arnault, Diamond Sensors Laboratory, France
SURFACE MODIFICATIONS OF NANODIAMONDS: TOWARDS ENHANCED CHEMICAL REACTIVITY

12:00 - 14:00 Lunch Break

Session 13: Nano-Diamond and Applications – 3
Session Chairs: Erhard Kohn; Hongjun Zeng

14:00 - 14:30 *Keynote Presentation*: Christoph E. Nebel, Fraunhofer-Institute for Applied Solid State Physics, Germany
BIOMIMETIC DIAMOND INTERFACES FOR PROTEIN IMMOBILIZATION

14:30 - 14:55 *Invited Presentation*: H. A. Girard, Diamond Sensors Laboratory, France
SELF-ASSEMBLED NANODIAMONDS LAYERS FOR INNOVATIVE DIAMOND-BASED DEVICES
Thursday, October 20, 2011 (continued)

14:55 - 15:20 Invited Presentation: Ken Haenen, Hasselt University & IMEC, Belgium
FUNCTIONAL B-DOPED NANOCRYSTALLINE CVD DIAMOND FILMS

15:20 – 15:40 Coffee break

Session 14: Nano-Diamond and Applications – 4
Session Chairs: Christoph E. Nebel; James Rabeau

15:40 - 16:10 Keynote Presentation: John A. Carlisle (Hongjun Zeng representing), Advanced
Diamond Technologies, USA
ULTRANANOCRYSTALLINE DIAMOND (UNCD) FILMS AND THEIR APPLICATION
TO MEMS, BIOSENSORS, AND NANOMANUFACTURING

16:10 - 16:35 Invited Presentation: Makoto Kasu, NTT Basic Research Laboratories, Japan
DIAMOND-BASED ELECTRONIC DEVICE TECHNOLOGIES

16:35 - 17:00 Invited Presentation: Karin Larsson, Uppsala University, Sweden
EFFECT OF DOPANTS ON DIAMOND (111), (110) AND (100) GROWTH RATES

18:00 – 21:00 Conference Banquet
Session 15: Graphene Physics and Chemistry – 4
Session Chairs: Kazuhito Tsukagoshi; Linjie Zhi

08:30 - 09:00 Keynote Presentation: Andrew T. S. Wee (Wei Chen representing), National Univ. of Singapore, Singapore
EPITAXIAL GRAPHENE: GROWTH AND DOPING

09:00 - 09:25 Invited Presentation: Ian D. Sharp, Walter Schottky Institute, Germany
DEVELOPMENT OF FUNCTIONAL GRAPHENE TRANSISTORS FOR BIOSENSOR APPLICATIONS

09:25 - 09:50 Invited Presentation: Kwok Sum Chan, City Univ. of Hong Kong, Hong Kong
SPIN CURRENT GENERATION BY ADIABATIC QUANTUM PUMPING IN GRAPHENE

09:50 - 10:10 Contributed Presentation: Gun-Do Lee, Seoul National University, Korea
THE FORMATION AND STABILITY OF VACANCY, DISLOCATION, AND GRAIN BOUNDARY IN GRAPHENE

10:10 – 10:30 Coffee break

Session 16: Graphene Applications – 2
Session Chairs: Ian D. Sharp; Wei Chen

10:30 - 10:55 Invited Presentation: Kazuhito Tsukagoshi, NIMS, Japan
GATE-INDUCED SEMICONDUCTIVE PROPERTY AND DEVICE-OPERATION IN BILAYER GRAPHENE

10:55 - 11:20 Invited Presentation: Linjie Zhi, National Center for Nanoscience and Technology, China
WELL-DEFINED GRAPHENE BASED NANOMATERIALS AND THEIR ENERGY-RELATED APPLICATIONS

11:20 - 11:45 Invited Presentation: Xiaodong Chen, Nanyang Technological University, Singapore
ASSEMBLY OF GRAPHENE SHEETS INTO HIERARCHICAL STRUCTURES FOR HIGH-PERFORMANCE ENERGY

11:45 - 12:00 Closing Remarks: Prof. Shuit-Tong Lee

12:00 - 13:30 Lunch
Abstracts

Carbon-Based Nano-Materials and Devices

October 17-21, 2011

Suzhou, China
HIGHLY EFFICIENT ORGANIC DEVICES

Karl Leo, TU Dresden
Mommsenstr, Dresden, 01219, Germany
T: +49-351-463-34389, F: -7065, leo@iapp.de

Organic semiconductors with conjugated electron system are currently intensively investigated for optoelectronic applications. This interest is spurred by novel devices such as organic light-emitting diodes (OLED), and organic solar cells. For both devices, high efficiency is a key parameter for many applications. In this talk, I will discuss some of the recent progress on highly efficient OLED and solar cells, in particular results using doped transport layers /1/: Surprisingly, doping (for raising the conductivity) has been largely ignored till now in organic devices, in contrast to classical silicon technology where controlled n- and p-type doping has always been a standard technique needed for virtually all devices. The concept of molecular doping allowed to realize green OLED devices with the highest efficiencies reported so far /2/, well exceeding the efficiency of current inorganic GaN LED! The devices were pin-devices where the emitting layer is embedded between a p-doped hole transport layer and an n-doped electron transport layers. It has been shown that these pin-structures can also achieve extremely long lifetimes. White OLED have recently achieved very high efficiencies of 90lm/W /3/, significantly higher than fluorescent tubes, opening the path to a new form of high-efficiency area lighting devices. The doping concepts can be applied in organic solar cells as well. Here, the use of electrically doped transport layers is helpful for an optimized optical design since it yields large freedom in the choice of window layer thickness, this making it easy to put the absorber layers in the electric field maximum in the cavity /4/. Also, doped layers are a key point in efficient charge recombination junctions for tandem solar cells: It has been shown that a pn-junction is an excellent recombination contact causing very small voltage loss. Recently, we have achieved solar cells with certified efficiency exceeding 8% on larger area. /1/ K. Walzer, B. Maennig, M. Pfeiffer M, K. Leo, Chem. Rev. 107, 1233 (2007) /2/ G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004). /3/ S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, Nature 459, 234 (2009). /4/ R. Schueppel, R. Timmreck, N. Allinger, T. Mueller, M. Fumo, C. Uhrich, K. Leo, and M. Riede, J. Appl. Phys. 107, 044503 (2010).*: I would like thank Jan Blochwitz-Nimoth, Torsten Fritz, Kentaro Harada, Gufeng He, Qiang Huang, Björn Luessem, Rico Meerheim, Martin Pfeiffer, Sebastian Reineke, Moritz Riede, Rico Schüppel, Gregor Schwartz, Karsten Walzer, Ansgar Werner, Xiang Zhou, and many others for their participation in this work.
WHITE ORGANIC LIGHT-EMITTING DIODES FOR LIGHTING

Ma Dongge, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
Changchun Renmin Street 5625, Changchun, Jilin, 130022, P.R. China
T: 0086-431-85262357, F: 0086-431-85262873, mdg1014@ciac.jl.cn

White-light organic light-emitting diodes (WOLEDs) have drawn an increasing attention for application in backlights in liquid crystal displays and next generation solid-state lighting due to the advantages of light weight, low operating voltage and high contrast. This talk will discuss the advances in WOLEDs and our recent progresses made in developing efficient WOLEDs at CIAC. WOLEDs with a power efficiency of over 50 lm/W and CIE of (0.44, 0.41) have been achieved through proper selection of the active materials and optimal design of the device structure.
We demonstrate novel two ways to realize very small energy gap between singlet and triplet exciton levels $dE(\text{ST})$, which lead to high efficiency for radiative-exciton production. Since $dE(\text{ST})$ can be determined by the exchange energy between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), $dE(\text{ST})$ for donor-acceptor type molecules and exciplexes is expected to be very small, due to the separation of the positive and negative charges located mainly in donor and acceptor units, respectively. Our observations show that a high reverse intersystem crossing (ISC) efficiency can be realized using these unique molecular systems. By taking advantage of the highly efficient ISC, we demonstrate a pronounced enhancement of electroluminescence efficiency under electrical excitation.
Organometallic molecules have become a field of intense activities in the optoelectronic research. They hold great promise as versatile functional materials for use in energy interconversions. These include systems where light is transformed into electricity and vice versa. This lecture highlights the recent progress in the development of some organometallic complexes and polyynes polymers which exhibit tunable luminescent and electronic properties. Focus is placed on evaluating their suitability as emitters in light-emitting applications and semiconductors in photovoltaic cells for solar power generation. The approaches based on structural variation of the organic groups to tune the emission and photovoltaic properties of these materials will be presented.

Generally, the optoelectronic performance (luminescence and carrier mobility) of organic crystals constructed by pi-conjugated molecules depended on the molecular stacking modes. We present here our investigations for the relationship of molecular stacking structure and optoelectronic properties in pi-conjugated molecule crystals, involving construct crossed dipole stacking (X-stacking) for high crystal luminescence efficiency, J-type dipole stacking and strong \(-\)interactions in the crystals of distyrylbenzene derivatives, uniaxially oriented molecular crystal of cyano substituenced oligo(p-phenylene vinylene), and doped organic crystals exhibiting high luminescent efficiency, color-tunable emission. Recently a high luminescence efficiency cyano substituent oligo(para-phenylene vinylene) (CN-DPDSB) crystal (95\%) grown by the physical vapor transport (PVT) method showed well-balanced bipolar carrier-transport characteristic (\(\mu_{\text{hole}}=2.5-5.5\times10^{-2}\ \text{cm}^2/\text{V}s; \ \mu_{\text{electron}}=0.9-1.3\times10^{-2}\ \text{cm}^2/\text{V}s\)) and excellent optically pumped laser properties that the threshold for ASE is about 4.6 \(\mu\text{J/ pulse (23 KW/cm}^2\)), and the gain coefficient at the peak wavelength of ASE and loss coefficient caused by scattering are \(\sim35\) and \(\sim1.7\ \text{cm}^{-1}\), respectively. That indicates CN-DPDSB crystal to be as a promising candidate for organic laser diodes.
Organic photovoltaic (OPV) devices with potential application in low cost solar energy conversion have attracted huge attention in recent years. A major challenge is to design materials that allows for broad solar spectral coverage to enhance the generation of excitons as well as better charge carrier transport properties. The optical and electronic conductivity properties of a given semiconductor depend on factors such as film morphology, molecular orbital energy alignment and molecular packing. Therefore one of the important aspects is molecular alignment that enhances the intermolecular charge transport of the active material. Here, we discuss various carbon based conjugated system and their self-assembly properties for the solution processed high efficiency photovoltaic devices.

We report results from theoretical studies on the electronic, transport and optical properties of graphene and graphene-based nanostructures. A number of phenomena derived from the unique electronic structure of graphene are shown. The carrier dynamics in graphene exhibits anomalous anisotropy when subjected to an external periodic electrostatic potential of nanometer dimensions (called graphene superlattices). Under appropriate conditions, these graphene superlattices are shown to be electron supercollimators and new generation of massless Dirac fermions may be created. The nanoribbons are semiconductors with novel electronic, magnetic and optical properties. Our latest studies have further found the following: Magnetic edge states are predicted to persist on chiral graphene nanoribbons and have been seen in scanning tunneling spectroscopy (STS) measurements. The properties of graphene under a 1D inhomogeneous magnetic field may be mapped into those of one under an electric field and vice versa. Because of reduced dimensionality, electron-electron interaction effects are particularly important, leading to strong excitonic effects in the optical response of single- and multi-layer graphene. Quantum phases in graphene and bilayer graphene such as the Berry’s phase and the sign of the hopping integrals are directly extractable from angle-resolved photoemission spectroscopy. Charge transport across grain boundaries in graphene is also highly unusual, exhibiting a sizable transport gap for a broad class of grain boundaries. This work was supported by NSF, DOE and ONR.
SYNTHESIS OF GRAPHENE AND ITS APPLICATIONS IN ELECTRONICS

Yunqi Liu, Institute of Chemistry, Chinese Academy of Sciences
Zhongguancun, Beijing, 100190, China
T: +86-10-62613253, F: +86-10-62559373, liuyq@iccas.ac.cn

Graphene, a single layer of graphite, has many extraordinary electrical, mechanical, and thermal properties, such as high carrier mobility, ambipolar electrical field effect, tunable band gap, room temperature quantum hall effect, high elasticity, and superior thermal conductivity. In this presentation, we will report the preparation of few-layer graphene by chemical vapor deposition, solution exfoliation of graphite into large flake graphene by oleyl amine, and graphene ribbons prepared by a template method. An n-type field-effect transistor (FET) made of N-doped graphene and a high performance FET with graphene-modified source/drain electrodes are described. A general route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating is also invoked.

Graphene has been thought as an outstanding choice for many organic and all-carbon device applications owing to its unique structure and many outstanding properties. In this presentation, the results of a series of investigation using solution-processed graphene (SPGraphene) as the active, transparent electrode and composite materials for organic, and flexible various devices such as OPV, OLED, FET, Supercapacitor, Memory Device, Organic Magnetic/Electrical Switch, Actuators and so on will be presented. The results demonstrate that it is highly possible that SPGraphene, produced at large scale, can be an excellent choice as both the transparent electrode and active material for the next generation organic electronics.

References:
1. 'Toward All-Carbon Electronics: Fabrication of Graphene-Based Flexible Electronic Circuits and Memory Cards Using Maskless Laser Direct Writing', Jiajie Liang, Yongsheng Chen, Yanfei Xu, Zhibo Liu, Long Zhang, Xin Zhao, Xiaoliang Zhang, Jianguo Tian, Yi Huang, Yanfeng Ma, Feifei Li; ACS Appl. Mater. Interfaces, 2010, 2, 3310.
2. 'Graphene-based conducting ink for direct inkjet printing of flexible conductive patterns and their applications in electric circuit and chemical sensors', Lu Huang, Yi Huang, Jiajie Liang, Xiangjian Wan, Yongsheng Chen* Nano Res., 2011, in press.
5. 'Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting', Yanfei Xu, Guankui Long, Lu Huang, Yi Huang, Xiangjian Wan, Yanfeng Ma, Yongsheng Chen, Carbon, 2010, 48, 3308.
We study hot carrier transport under magnetic fields up to 15 T in suspended graphitic multilayers through differential conductance (dI/dV) spectroscopy. Distinct high-energy dI/dV anomalies have been observed and shown to be related to intrinsic phonon-emission processes in graphite. The evolution of such dI/dV anomalies under magnetic fields is further understood as a consequence of inter-Landau level cyclotron-phonon resonance scattering. The observed magneto-phonon effects not only shed light on the physical mechanisms responsible for high-current transport in graphitic systems, but also offer new perspectives for optimizing performance in graphene-based nano-electronic devices.
Graphene oxide (GO) is the graphene chemically modified with oxygen functional groups such as epoxides, alcohols, and carboxylic acids. Although the scalability for producing GOs portends their great potential in device applications, the development of physical and chemical methodologies to manipulate these atomically thin sheets is essential to putting them to use. We have developed simple and fast processes to obtain and control two-dimensional assembly of GOs. One of the methods we used was the bubble deposition. The surface coverage of the GO films could be finely tuned by changing the experimental conditions, e.g., deposition time, and concentrations of GO and surfactant, with the highest reaching above 90%. The control over the surface morphology and thickness of the GO films was readily achieved through successive layer-by-layer bubble deposition. The generality of this method has been revealed by direct GO deposition onto lithographically patterned silicon substrates with microelectrodes and flexible transparent PET substrates. Also demonstrated is the facile reduction of our GO films by thermal annealing, which results in conducting reduced-GO films. In another study, we have densely dispersed TiO2 nanospindles onto GO sheets via a spontaneous self-assembly process. After annealing of the TiO2/GO hybrid nanocomposite in an NH3 gas flow, the TiO2 surface was effectively nitridated and the GO was reduced to graphene sheets (GS) in order to further fortify the electronic functionality of the nanocomposite. This anatase oxynitride/titanium nitride-GS (TiO2 TiOxNy/TiN-GS) hybrid nanocomposite was studied as an anode material for lithium-ion batteries, showing excellent rate capability and cycling performance compared to the pure TiO2 nanospindles. Our systematic studies have revealed that the TiO2 TiOxNy/TiN-GS nanocomposite provide a promising solution to the problems of poor electron transport and severe aggregation of TiO2 nanoparticles by enhancing both electron transport through the conductive matrix and Li-ion accessibility to the active material from the liquid electrolyte. Finally, by thermal nitridation of reduced graphene oxide sheets, we have obtained highly conductive (~1000-3000 S/m) N-doped graphene sheets as a result of the restoration of the graphene network by the formation of C-N bonded groups and N-doping. Even without carbon additives, the supercapacitors made of the N-doped graphene electrodes can deliver remarkable energy and power operated at higher voltage range of 4 V. Acknowledgments: This work is supported by RGC-UGC-HK and HKUST.
THREE-DIMENSIONAL INTERCONNECTED GRAPHENE FOAMS AND THEIR COMPOSITES

Hui-Ming Cheng, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences
72 Wenhua Road, Shenyang, Liaoning, 110016, China
T: 86-24-2397 1611, F: 86-24-2390 3126, cheng@imr.ac.cn
Zongping Chen, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences
Wencai Ren, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences

Integration of individual two-dimensional graphene into macroscopic structures is essentially important for the application of graphene. A series of graphene-based composites have been recently fabricated using chemically-derived graphene sheets. However, these composites and structures suffer from poor electrical conductivity because of the low quality and/or high inter-sheet junction contact resistance of the chemically-derived graphene sheets. We report the direct synthesis of a three-dimensional porous graphene macrostructure by template-directed CVD, which we call graphene foam (GF). This porous graphene bulk material consists of an interconnected network of graphene, which is flexible and has fast transport channel of charge carriers for high electrical conductivity. Even with a GF loading as low as 0.5 weight percent, GF/poly (dimethyl siloxane) (PDMS) composites show a very high electrical conductivity of 10 S/cm, 6 orders of magnitude higher than chemically-derived graphene-based composites. Using this unique network structure and the outstanding electrical and mechanical properties of GFs, as an example, we demonstrate the possibility of GF/PDMS composites for flexible, foldable and stretchable conductors. 1. Z. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei, H. M. Cheng*, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nature Materials, DOI: 10.1038/NMAT3001, (2011).
Graphene has recently attracted a great deal of interest in both academia and industry because of its unique electronic [1] and optical properties [2]. The superb characteristics of graphene make this material one of the most promising candidates for various applications, such as ultrafast electronic circuits [1,3] and photodetectors [2], clean and renewable energy [4], and rapid single-molecule DNA sequencing [5]. The electronic properties of graphene systems heavily rely on the number of graphene layers [6], on their intrinsic defects [7], and on the coupling of the graphene sheet with the underlying substrate [1]. Fine control over the thickness and the crystalline structure of graphene layers is essential to realize the unique properties of graphene. We present our recent efforts on synthesizing single-layer graphene fully covering an entire substrate at low temperature [8] by surface segregation method and synthesizing uniform graphene-based composite composing of Au nanoparticles (Graphene-Au) by chemical route [9]. On the one hand, our surface segregation results demonstrate how to control the amount of carbon atoms for graphene formation to yield graphene films with a fine controlled thickness and crystal structure. On the other hand, our chemical route demonstrates how we can control the dispersibility of the Graphene-Au composite and the uniformity of Au nanoparticle decorated at the graphene basal plane, and thus show enhanced electrocatalytic activity. Our methods represent significant steps toward the scalable synthesis of high-quality graphene films with predefined thickness and toward realizing the unique properties of graphene films or graphene-based nanocomposites with high dispersibility in water.

CONTROL OF WETTABILITY ON CARBON-NANOFIBER SURFACES: FROM HYDROPHILICITY TO SUPERHYDROPHOBICITY

Hrudya Nair, Catalytic Processes and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente
P.O.Box 217, Enschede, Overijssel, 7500 AE Enschede, The Netherlands
T: +31 (0) 53 489 3033/3529, F: +31 (0) 53 489 4683, H.Nair@tnw.utwente.nl
Roald M. Tiggelaar, Mesoscale Chemical Systems, Faculty of Science and Technology, University of Twente
Arie van Houselt, Catalytic Processes and Materials, Faculty of Science and Technology, University of Twente
Leon Lefferts, Catalytic Processes and Materials, Faculty of Science and Technology, University of Twente

Carbon nanofibers (CNFs) are cylindrical or conical structures with a diameter ranging from a few to hundreds of nanometers and a length of few nanometer to millimeters [1]. They are made of graphene sheets and are further classified as bamboo type, herringbone type, cup-shaped etc depending on the orientation of graphene sheets with respect to the fiber axis. CNFs have promising properties due to their inert nature and unique electrical and mechanical properties. They may for example be used as a catalyst support in three-phase reactions [2] or as a superhydrophobic (i.e. contact angle > 150°) layer in microfluidic devices [3].

We will discuss the wetting properties of catalytically grown CNF layers. These layers are grown by chemical vapor decomposition of ethylene over a 25nm Ni thin film catalyst-layer, supported on an oxidized silicon wafer. The morphology (diameter, thickness) of the CNFs is examined using a high resolution scanning electron microscope. The wetting behavior is studied by evaluating the contact angles on the layers.

Typically superhydrophobicity on CNF substrates is obtained by chemical post – treatment of the surface [4]. Here we show that by varying the growth parameters one can really control the surface wettability from hydrophilic (~ 40°) to superhydrophobic (~159°), without further chemical post-treatments.

Moreover, as an example of the precise control we will show a case study of droplet evaporation on such a pristine superhydrophobic CNF sample. On these samples, the water droplet evaporates while the contact area with the CNF surface remains constant (no contact line dynamics) [5].

LOW-VOLTAGE ORGANIC THIN-FILM TRANSISTORS AND CIRCUITS FOR FLEXIBLE ELECTRONICS

Hagen Klauk, Max Planck Institute for Solid State Research
Heisenbergstr. 1, Stuttgart, 70569, Germany
T: +49 711 689-1401, F: +49 711 689-1472, H.Klauk@fkf.mpg.de

Organic thin-film transistors (TFTs) are of interest for applications that require electronic functionality with low or medium complexity distributed over large areas on unconventional substrates, such as flexible plastic film. Generally these are applications in which the use of silicon-based devices and circuits is technically or economically not feasible, such as flexible active-matrix displays and large-area sensor arrays. In organic TFTs, the semiconductor is a thin polycrystalline layer of conjugated organic molecules and is deposited either by vacuum sublimation or by a solution process. Especially for portable, battery-powered applications it is desirable that the TFTs can be operated with voltages in the range of about 2 to 3 V. A promising approach to organic TFTs that can be operated with such low voltages are gate dielectrics based on an ultra-thin organic self-assembled monolayer (SAM). These dielectrics have a thickness of about 5 nm, a capacitance close to 1 µF/cm², and leakage current densities below 10⁻⁵ A/cm² at 3 V, despite the fact that they are prepared at temperatures below 100 °C and are thus fully compatible with plastic substrates. Depending on the choice of the organic semiconductor, the field-effect mobility in organic TFTs is usually close to 1 cm²/Vs. The static and dynamic performance of organic p-channel TFTs with lateral dimensions of a few microns is already sufficient for active-matrix displays with VGA resolution where the TFTs operate with frequencies of a few tens of kilohertz. Increasing the performance of organic TFTs into the Megahertz regime is possible by scaling the lateral TFT dimensions down to about 1 µm or slightly below, which requires innovative patterning techniques compatible with flexible large-area substrates. Substantial advances have also recently been made in the environmental stability of organic TFTs and in the development of high-mobility, air-stable organic n-channel TFTs that are necessary for the realization of organic complementary circuits, for example to implement the row and column driver circuits of flexible displays and sensor arrays.
HIGH-PERFORMANCE PRINTED ORGANIC TRANSISTORS

Jun Takeya, ISIR, Osaka University
8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
T: +81-6-6879-8400, F: +81-6-6879-8404, takeya@sanken.osaka-u.ac.jp

Development of high-performance printed semiconductor devices is highly desired with the expectation for the next-generation technologies of “printable electronics”. We report newly developed arrays of patterned crystalline OFETs formed from hot solution. Mobility of 5-10 cm²/Vs is achieved for the present OFETs, opening a practical way to realize printed and flexible electronics with sufficient switching speed.
Electronic devices based on organic semiconductors are attracting much attention due to their potential in fabricating flexible electronics. Field effect transistors, memories are among the key components in these applications. Pentacene films deposited on a silica surface decorated with metallic nanoparticles or organic clusters constitute the three-terminal transistor/memory device, with the metal nanoparticles or organic clusters serve as charge trapping sites. The crystallinity and packing orientation of the pentacene film depend on the surface modification of the metallic nanoparticles or the structure of organic clusters. Electrical bistability can be observed with these composite films as conducting channel. The threshold voltage shifts (memory window), on/off ratio, response time and the retention characteristics depend on the surface modification of nanoparticles or the surface property of the organic clusters used. A detailed discussion of the morphology of the pentacene films as a function of the structure of pentacene/insulating dielectric interface and the I-V hysteresis of the transistor/memory device will be provided.
Using photovoltaic (PV) effect to generate electricity from solar energy represents a highly appealing solution to our need for clean, abundant, and renewable energy sources, and to our desire for protecting the environment. Organic semiconductor based PV cells are viewed as one of the most promising candidates for low cost solar cells due to the low material cost and the possibility of using wet processes, such as spin-coating, ink-jet, and roll-to-roll printing for fabrication on flexible plastic substrates. Since the introduction of the BHJ concept in mid-90’s, much research effort in this field has been directed to the control of the BHJ nano-scale morphology, and to the development of new low band gap p-type polymers. As a result, significant improvement has been made in the past decade on the power conversion efficiency (PCE) of BHJ polymer solar cells. In this work, through controlling the processing conditions, we were able to control the nano-scale morphology of the bulk heterojunction active layer comprised of poly(N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT) and PC71BM, and improved power conversion efficiency from 6.0% to 7.1% for large area devices. We have also developed a new alternating copolymer of dithienosilole and thienopyrrole-4,6-dione (PDTSTPD), which posses both a low optical bandgap (1.73 eV) and a deep HOMO level (5.57 eV). The introduction of branched alkyl chains to the dithienosilole unit was found to be critical for the improvement of the polymer solubility. By blending PDTSTPD with PC71BM, and proper control of the active layer morphology, we have achieved 7.3 % PCE under one sun of AM1.5G simulated irradiation on solar cells with an active area of 1 cm².
In this talk, I will discuss new chemical strategies to synthesize graphene, from large area sheets to nanographene.

Majority of the solution-phase methods produce irregularly-sized and shaped graphene sheets due to the intrinsic randomness in the defect-mediated exfoliation or cutting process of the precursor graphitic flakes. To produce highly regular graphene nanostructures, a fabrication process that is driven by thermodynamics, as in crystal growth, should be more suitable than defect-mediated fragmentation processes. To this end, we will show how we apply templated-directed synthesis to fabricate regular-sized graphene quantum dots. The dynamics of carbon cluster diffusion and aggregation to form nanographene islands is recorded by dynamic Scanning Tunneling Microscopy. The charge transfer interactions between graphene and fullerene, as well as the Van der waals epitaxy of Graphene on self-assembled C60 will be discussed.

Graphene form functional hybrids with organic molecules, quantum dots and polymers and these can exhibit non-linear optical limiting properties, saturable absorption properties, outstanding photovoltaic and biosensing properties. Some examples of these applications studied in our laboratory will be given in this talk.

Acknowledgement: This project is funded by the National Research Foundation Competitive Research Funding - Graphene and Related Materials R-143-000-360-281.

References
On-surface covalent coupling under ultrahigh vacuum (UHV) conditions is a new concept to create robust, ordered molecular surface structures that may also exhibit novel properties. Starting from designed small primer molecules, on-surface synthesis of graphene nanoribbons (GNRs) has been achieved [1]. To study the electronic structures of these novel GNRs with well-defined width and shape, both local measurement by means of scanning tunneling spectroscopy (STS) and integral measurement in terms of angle-resolved photoemission spectroscopy (ARPES) have been conducted. Due to the elongated form of the GNRs, the ARPES experiments have to be carried out on well orientated GNRs achieved by using high index metal crystal surfaces. Information of both band gap and band structures was obtained which consistent with the theoretical calculations. [1] J. Cai et al., Nature 466, 470 (2010).
A novel method of fabricating carbon nanofiber (CNF) paper has been reported by growing nanofibers on the surface of self assembled hollow glass microballoons. A layer of hollow glass microballoons were first formed on a silicon wafer substrate by a unique method similar to dip coating. This unique method comprised of immersing the wafer in ethanol suspension of Ni coated microballoons and lowering the level of suspension by draining from the bottom. The hollow glass microspheres used for making the suspension were coated with Ni using electroless deposition technique. Random networks of carbon nanofibers were formed by directly depositing them on the surface of the self assembled microballoons using water assisted thermal chemical vapor deposition (CVD) of acetylene at 5700 C, at atmospheric pressure. The CNFs grown on one microballoon networked with CNFs on an adjacent microparticles. Thus the self assembled layer of microballoon was bonded together effectively with the help of CNF networks to form microsphere reinforced CNF paper structure in approximately 15 minutes of growth time. The dimensions of the CNF paper was as big as the dimension of the wafer (~18 x 60 mm), and easily peeled off from the wafer. The paper could find potential application in thin film conductive syntactic foams, as a sensing element, and as a lithium ion anode.
SYNCHROTRON SPECTROSCOPY FOR THE ANALYSIS OF CARBON-BASED NANOMATERIALS

T.K. Sham, Department of Chemistry, University of Western Ontario
1151 Richmond Street, London, Ontario, N6G 3S8, Canada
T: 1-519-661-2111x86341, F: 1-519-661-3022, tsham@uwo.ca

The advent of maturing third generation synchrotron technology has provided unprecedented research opportunities in probing the structure and electronic properties of matter, especially nanomaterials. Synchrotron is an accelerator based light source that is tuneable in energy (from IR to hard X-rays) and polarization (linear, circular and elliptical), highly collimated, and pulsed. This presentation will give an overview of synchrotron techniques including X-ray Absorption Fine Structures (XAFS), X-ray Emission Spectroscopy (XES), X-ray Excited Optical Luminescence (XEOL) and spectro-microscopy using STXM (Scanning Transmission X-ray Microscopy) and their applications in the studies of functional carbon based materials such as carbon nanotubes, carbon nanowires, carbon nanoparticles, nanodiamond, graphene and graphene oxide based materials among others.
The ability to control the particle size and morphology of nanostructured carbon-based materials is of crucial importance nowadays both from a fundamental and industrial point of view considering the applications of solar photovoltaic, energy storage such as hydrogen storage and Li-ion batteries, chemical and biosensors etc. The properties of matter at nanoscale dimensions can be dramatically different from the bulk or the constituent molecules. The differences arise through quantum confinement, altered thermodynamics or changed chemical reactivity. In general, electronic structure ultimately determines the properties of matter, thus a complete understanding of the electronic structure of nanoscale systems and tailoring their properties will lead to progress in renewable energy science.

The applications of soft x-ray absorption (XAS) and emission spectroscopy (XES) on a variety of carbon systems have yielded characteristic fingerprints. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms? XAS and XES have basic features that are important to interface science. With high-resolution synchrotron radiation excitation, resonant inelastic x-ray scattering (RIXS) has emerged as a new source of information about electronic structure and excitation dynamics. The experimental findings regarding x-ray spectroscopic studies of various carbon-based materials including diamond, graphite, graphene layer, B-doped diamond and Li-intercalation in graphite, contacting polymers, fullerenes (C_{60}, C_{70}, C_{84}), fullerites (C_{59}N, La_{2} C_{80}, Gd C_{82}) and single walled carbon nanotubes will be presented. We will show the bandgap measurements in diamond and carbon nanotubes, charge-transfer in Ti-doped C_{60} and Gd C_{82}, in-situ characterization of SWNTs in hydrogen atmosphere to reveal the H_{2}-adsorption induced changes in structure and electronic structure of the carbon based materials, and recent progress on in-situ study of carbon-based anode and electrolyte materials in Li-ion batteries.
The information of the electronic structures of organic electronic materials is indispensable for understanding and improving organic electronics. So far, photoelectron spectroscopy (PES) has been widely applied for that purpose. But when we want to investigate practical electronic structure, PES has some problems. Firstly, PES needs at least high vacuum environment to perform measurement. Organic devices usually work under influence of air, and their electronic structures not only in vacuum but also in air should be investigated. The necessity of vacuum environment also disturbs the measurement of liquid sample with high vapor pressure. Secondly, most organic samples have very low conductivity, and PES measurements often encounter difficulty due to sample charging: holes which are created by photoemission tends to stay in surface region to disturb further photoemission. So, thin film preparation is necessary for PES, and it is not easy to apply PES to organic single crystals.

To overcome the above demerits of PES, we have focused on photoelectron yield spectroscopy (PYS). In this technique, the total number of photoelectrons is recorded as a function of incident photon energy. By using current-mode-detection of photoelectron, PYS can be performed both in vacuum and atmospheric conditions. By applying an electric field to sample surface, we can measure PYS of even extremely insulating material. In this paper, we will report on recent efforts of PYS investigation of electronic structures of various materials in practical situation which cannot be studied by conventional PES. The main topics are as follows.

(i) The electronic structure of organic single crystals: observation roughness-induced gap state
It has been widely believed that structural disorder induces broadening of intrinsic energy level and the formation of gap-state. But the direct observation of such a gap-state is still limited, and the origin and formation mechanism are not well understood. In order to investigate such effects, the direct comparison in electronic structure between well-ordered and disordered systems should be desired. By comparing very flat and rough surfaces of anthracene single crystals, we have succeeded to directly observe the roughness-induced effect to the electronic structure.

(ii) The electronic structures of liquid organic semiconductors
Very recently, an organic light emitting diode using liquid organic semiconductor, 9-(2-ethylhexyl)carbazole (EHCz) doped with rubrene, has been reported. In order to understand the operation mechanism, the electronic structure of this host-guest system was investigated by PYS. The relative energy location of HOMO states between the host and guest molecules was successfully determined. We focused on the difference in polarization energy between solid and liquid phase, which is very important to search good liquid materials for organic electronics.
QUANTIZED CONDUCTANCE OF A SUSPENDED GRAPHENE NANOCONSTRUCTION

Alina Veligura, University of Groningen
Nijenborgh 4, Groningen, Groningen, 9747 AG, The Netherlands
T: +310503634919, F: +31 50 363 4879, a.veligura@rug.nl
Nikolaos Tombros, University of Groningen
Juliane Junesch, Marcos H. D. Guimarães, University of Groningen
Ivan J. Vera Marun, Harry T. Jonkman, University of Groningen
Bart J. van Wees, University of Groningen

A yet unexplored area in graphene electronics is the field of quantum ballistic transport through graphene nanostructures. Recent developments in the preparation of high mobility graphene are expected to lead to the experimental verification and/or discovery of many new quantum mechanical effects in this field. Examples are effects due to specific graphene edges, such as spin polarization at zigzag edges of a graphene nanoribbon and the use of the valley degree of freedom in the field of graphene valleytronics. As a first step in this direction we present the observation of quantized conductance at integer multiples of 2e^2/h at zero magnetic field and 4.2 K temperature in a high mobility suspended graphene ballistic nanoconstriction. This quantization evolves into the typical quantum Hall effect for graphene at magnetic fields above 60mT. Voltage bias spectroscopy reveals an energy spacing of 8 meV between the first two subbands. A pronounced feature at 0.6 2e^2/h present at a magnetic field as low as ~0.2T resembles the '0.7 anomaly' observed in quantum point contacts in a GaAs-AlGaAs two dimensional electron gas, having a possible origin in electron-electron interactions [1].

The produced graphene devices were suspended over the trenches in LOR-A, a polydimethylglutarimide based organic resist. The resist has a high glass transition temperature of 190oC and therefore is very resistant to chemical and thermal treatments. This polymer property allows the fabrication of large (suspended over area of 35 um2) high quality suspended graphene devices with almost no limitations on contact material [2].

CHEMICAL AND STRUCTURAL ROLES OF GRAPHENE IN STEM CELL GROWTH AND DIFFERENTIATION

Chwee Teck Lim, National University of Singapore
Division of Bioengineering, Faculty of Engineering, 9 Engineering Drive 1, Singapore, 117576, Singapore
T: (65) 65167801, F: (65) 67791459, ctlim@nus.edu.sg
Wong Cheng Lee, National University of Singapore
Candy Haley Yi Xuan Lim, National University of Singapore
Lena Ai Ling Tang, National University of Singapore
Hui Shi, Kian Ping Loh, National University of Singapore

Over the last two decades, while there have been significant advances in stem cell therapy and tissue engineering, the search for an ideal substrate for stem cell culture and differentiation continues. Human bone marrow derived mesenchymal stem cells (hMSCs) have been widely recognized to have significant biological and clinical importance due to their ability to differentiate into multiple cell types. While stem cell differentiation depends largely on the various soluble factors and biomolecules, lineage commitment of stem cells can also be governed by their interaction with nanoscale features of the extracellular matrix (ECM). Nanotechnology has emerged as a promising tool to design and create materials with nano-sized features and architectures which are capable of biomimicking the native ECM environment for stem cell culture and differentiation. In particular, graphene has generated great interest because of its unique chemical, mechanical and electrical properties. The synergy of the properties of graphene and differentiation potential of stem cells could provide exciting opportunities for new and novel therapeutic applications. However, little is known about the effect of graphene on stem cell fate. Here, we report the interaction between stem cells and graphene in terms of stem cell growth and differentiation. Our preliminary results show that graphene promoted differentiation of MSCs towards the osteogenic lineage under the influence of soluble factors while differentiation towards the adipogenic lineage is greatly suppressed. We attribute the unique differentiation profile of MSCs on graphene to the pi-pi interactions between graphene and the soluble biomolecules involved during the differentiation process.
Typical sp2 carbon nanomaterials include bulky balls, carbon nanotubes (CNTs), and graphene. In the past few years, the in vivo biodistribution and toxicity of functionalized single-walled carbon nanotubes (SWNTs) have been studied in animals. Owing to their interesting chemical and physical properties, SWNTs are useful for biomedical imaging and cancer treatment, in vitro and in vivo. Graphene is a star in material sciences. Utilizing the strong optical absorbance of nano-graphene in the near-infrared (NIR) region, we have achieved highly effective in vivo photothermal ablation of tumors in animal experiments by intravenous administration of functionalized nano-graphene and the followed low-power NIR laser irradiation on the tumor. No obvious toxicity effect of functionalized nano-graphene is noted in our detailed toxicology study. Taken together, sp2 carbon nanomaterials are promising for future multimodality cancer therapy and imaging.

The distinctive and tunable properties of carbon-based nanomaterials enable new technologies for identifying and addressing many technical challenges. The objective of this review is to critically assess a broad overview of the methodology, advantages and limitations of carbon-based nanomaterials with respect to applications in chemical fields including energy conversion, catalysis, hydrogen storage, and air pollution treatment etc. Aiming to demonstrate the impact of nanomaterials on the development of novel energy conversion applications, recently reported developments have been included. Special emphasis is given to the applications of carbon nanotubes as it has great potential in chemical applications among all carbon-based nanomaterials. Even though discussed only in brief, incorporated is a segment highlighting nanomaterials synthesis technique called chemical vapor deposition, as well as catalytic applications of nanomaterials that can be used in the design of future chemical production.
Due to the unique combination of optical transparency and highly sensitive surface conducting channel, graphene grown by chemical vapour deposition affords the possibility of dual-mode sensing based on optical and field-effect properties. This opens up new possibilities for making integrated cellular semiconductor nanodevices where the binding of cells can be followed using optical microscopy whilst the associated changes in cell surface charge can be tracked using the space charge effect in the graphene semiconductor. As a proof-of-concept, the stage-dependent alteration of negative charges on erythrocytes by Plasmodium falciparum is studied at the single-cell level. Such a synergistic approach provides a powerful methodology for the study of cell surface charge density which influences cytoadherence of Plasmodium falciparum infected red blood cells (IRBCs) to endothelium.
Graphene has attracted enormous research interests due to its exceptional electronic transport properties and potential applications in nanoelectronics. The photonic properties of graphene are equally remarkable. Its universal optical conductance is defined by the fine structure constant and is independent of frequency over a wide range.\[1\] Its zero-gap nature affords benefits the high bandwidth detection of light.\[2\] The easy saturation of its absorption due to Pauli blocking enables graphene to be used as saturable absorbers in broadband, ultrafast mode-locked lasers for telecommunication.\[3,4\] The two dimensional (2D) nature of graphene enables the design of photonic circuits with ultrathin channels, where graphene can assume different functions of light creation, routing or modulation and detection. Here we will review our recent progress to develop graphene photonic devices, which include mode-locked laser, light modulator and photodetector. Firstly we would like to review our initiative works on graphene mode-locked lasers. Due to wavelength independent saturable absorption in visible-to-near-infrared range, wide-band tuneable lasers were invented to generate ultra-short pulses in telecommunication C band (around 1550 nm)\[3,4\] as well as even short near-infrared wavelength at 1050 nm\[5\]. Stable mode locked pulses with single pulse energy up to 7.3 nJ and pulse width of 415 fs have been directly generated from the laser.\[6\] Secondly, we experimentally and theoretically investigated the interaction between graphene and transverse electromagnetic wave. By tuning the chemical potential of graphene, the sign of complex dynamics conductivity can be varied sensitively at infrared frequencies, which allow varying amount of contribution from intraband and interband conductivities, leading to certain modulation of light during propagation.\[7\] Last, we report our recent work in graphene-based photodetector. The use of graphene nanoribbons with a transport bandgap enables us to significantly suppress the dark current in phototransistor, which affords much larger signal-to-noise ratio and improved responsivity. We also highlight our progress in fabricating a printable graphene-TiO2 hybrid film for high-gain photodetection.\[8\]

Carbon nanotubes (CNTs) have attracted much attention for field emission applications due to their excellent properties and unique morphology. There are many reports on CNT based field emission applications such as field emission displays, flat lamps, x-ray sources, high-resolution electron-beam instruments, microwave amplifiers and terahertz wave amplifiers. Field emission properties of CNTs are deeply dependent on not only diameter, crystallinity, density and morphology of CNTs but also post treatment of CNTs. Thus, it is desirable to control of CNT materials for optimized field emitters for various applications. Up to now, various techniques have been developed for fabricating CNT field emitters using as-grown, spraying, electrophoresis, screen-printing, and attaching methods, etc. By the way, the above techniques suffer from weak mechanical adhesion between CNT emitters and the cathode, or severe degradation of CNT emitters due to the residual organic materials used in the process. Therefore, a robust CNT emitter fabricated by the organic binder-free process with strong adhesion is still a great challenge. Here we investigate field emission properties of CNTs according to various parameters and we also demonstrate an advanced technique to fabricate CNT emitters with an organic binder-free process. This method can promise strong mechanical adhesion, good electrical contact and damage-free CNT tips, resulting in enhanced field emission properties and excellent emission stability.
This paper presents an in-depth electrical characterization of contact resistance in carbon nanotube (CNT) via interconnects grown under various conditions. Following the bottom-up approach of interconnect fabrication processes in the nanoelectronics industry, a via test structure to extract the contact resistance is designed and fabricated to obtain the contact resistances via a two-terminal extraction method. Si process-compatible metals, Ti, Cr, and Al, are used as underlayer metals to study the growth behaviors and contact resistances of vertically aligned CNTs, together with the two most effective catalysts, Ni and Fe. Relationships between contact resistances and various combinations of catalysts and underlayer metals are investigated. Further, the interface between CNT and underlayer metal is investigated using X-ray photoemission spectroscopy (XPS) to elucidate the relationship between local electronic structure and contact resistance.
A CNT BASED DEVICE FOR ELECTROCHEMILUMINESCENCE SENSING

Danilo Demarchi, Politecnico di Torino
Corso Duca degli Abruzzi, 24, Torino, TO, 10129, Italy
T: +39 011 090 4122, F: +39 011 090 4099, danilo.demarchi@polito.it
Alberto Tagliaferro, alberto.tagliaferro@polito.it

The system presented is based on the production and use of bundles of Carbon NanoTubes (CNTs) as electrodes for building ElectroChemiLuminescence (ECL) device sensors.

For this purpose we have grown self standing cylinder-shaped bundles of Multi-Walled Carbon NanoTubes (MWCNTs) by means of a catalytic Chemical Vapour Deposition (CVD) system, fed by camphor and ferrocene gases. Ferrocene has been selected as the catalyst source because it is a good precursor for the production of iron nanoparticles, which play the role of catalyst in the formation of nanotubes. Camphor has been chosen as carbon precursor due to the fact that it is non-toxic, commercially available and inexpensive. Moreover, the structure of camphor molecule makes it an ideal carbon precursor to produce fullerenes and nanotubes. Finally, camphor and ferrocene have similar melting and boiling points and this favors the co-evaporation process of the reagents mix (ferrocene: melting point 174°C, boiling point 249°C; camphor: melting point 180°C, boiling point 204°C).

The bundles were subsequently back-contacted and encapsulated into epoxy resin as electrical insulator and sealant, for their use as voltammetric electrodes. A ruthenium-complex solution (Ru(bpy)₂^+ in phosphate buffer) has been used as ECL label. A custom potentiostat and software have been developed to perform all electrochemical experiments. The system is a three electrode electrochemical cell where the Reference is in silver, the Counter in gold and the Working is the produced bundle of CNTs. 500 μl of solution are spotted into a small glass container placed on the top of a Photo Multiplier Tube (PMT) then, the three electrodes are dipped in, and a suitable voltage sweep is applied to induce ECL reaction. At its emitting voltage, the chemical solution starts to produce light that is collected and amplified by the underneath PMT, which transfers to the control system a voltage proportional to the intensity of the collected light.

CNT bundles have shown a singular and very interesting behavior, in fact it has been observed a periodical light emission that lasts for hundreds of stimulus cycles, likely due to the structure of CNTs. Thanks to a data-processing algorithm, which exploits this behavior, the experiments show that it is possible to obtain a great increase in detection limit as compared to the commonly used metal working electrodes, allowing the detection of a ruthenium concentration of 40 pg/μl (i.e. a 10⁻⁷ M molar detection level).
We present results of extensive theoretical studies of functionalized carbon nanotubes (CNTs) and graphene layers (GLs). Our studies are based on the \textit{ab initio} calculations in the framework of the density functional theory (DFT). We have performed calculations for various metallic and semiconductor single- and multi-wall CNTs and epitaxial graphene, functionalized with simple organic molecules such as OH, COOH, NH\textsubscript{n}, CH\textsubscript{n} and metals, such as Al, Fe, Ni, Cu, Zn, and Pd. We determine the stability of the functionalized systems and resulting changes in the electronic structure. These studies provide valuable quantitative predictions that are of importance for design of novel composite materials and functional devices such as electric sensors of chemical and biological substances.

The functionalization of CNTs and GLs is an important problem of nanotechnology, which has recently attracted a lot of research activities, mostly because of the huge potential of CNT applications for new materials and functional devices. The functionalization is a prerequisite for effective dispersion and binding of the systems in polymer or epoxy matrices. It is also necessary to facilitate attachment of biological substances to channels made out of CNTs and/or GLs in electrical devices.

We discuss the dependence of the cohesive properties of functionalized carbon systems on the density of the adsorbed molecules. We calculate binding energies, heat of formation, resulting deformations of CNTs and GLs, and changes in the electronic structure induced by functionalization. We determine the critical density of molecules and metallic atoms that could be adsorbed on the surface of CNTs and GLs. All these factors influence the electrical and mechanical properties of the functionalized systems and are important for reliable description of the sensor electrical characteristics and also for modeling composite materials. Our studies shed light on physical mechanisms governing the binding of the adsorbed molecules and allow for comparison of the role played by two hosts.

Just to mention few specific results, we find that the stability of the functionalized CNTs is weakly dependent on the diameter of the CNTs and its metallic or semiconducting character, whereas the stability strongly decreases with the density of the adsorbed groups. It turns out that the functionalization of the single graphene layer can open its electronic gap; which could be utilized in graphene devices.

The very interesting and intriguing physical picture emerges from studies of CNTs and GLs covered with metallic atoms, particularly in the context of spintronic applications.
Carbon nanotubes (CNTs) have shown interesting electronic, mechanical, optical, thermal, and other properties and therefore have been pursued for a variety of applications by the nanotechnology community ranging from electronics to nanocomposites. We have been pursuing development of chemical and biosensors using carbon nanotubes for the last ten years and this talk will present our progress to date. In the case of chemsensors, we use an interdigitated electrode as a chemresistor where purified single-walled carbon nanotubes (SWCNTs) serve as the conducting medium. When the chemresistor is exposed to a gas or vapor, the change in resistance is recorded; if SWCNTs do not respond to a particular gas or vapor, then doping or functionalization strategies are used. A sensor array is constructed with 32-96 sensor elements with chemical variations across the sensor array. In the sensor training mode, a pattern of resistance changes is generated from the sensor array for a particular analyte and later in the identification mode, a pattern recognition algorithm is used to identify that analyte from the background. This talk will present examples from our work to demonstrate the functioning of the sensor.

In the case of the biosensor, a 'lock and key' approach is used wherein a preselected probe for a given target is attached to the tip of a carbon nanofiber (CNF). Numerous CNFs are grown using plasma chemical vapor deposition on a silicon wafer which serve as individual, freestanding, vertical electrodes. This nanoelectrode array (NEA) can use DNA, aptamer and antibody probes and electrochemical impedance spectroscopy is used upon probe-target binding for signal analysis. Results will be presented for identification of e-coli and ricin using this NEA. The author thanks all past and present NASA Ames colleagues for their contributions to the application development efforts, especially Jing Li, Yijiang Lu, and Jessica Koehne.
FLOATING CATALYST SYNTHESIS AND DRY DEPOSITION OF CARBON NANOTUBES FOR THIN FILM FLEXIBLE ELECTRONICS APPLICATIONS

Esko I. Kauppinen, Aalto University
Puumiehenkuja 2, P.O. Box 16100, Espoo, FI-00076 Aalto, FINLAND
T: +358 4 509 8064, F: +358 9 470 23517, esko.kauppinen@tkk.fi

We present results of extensive studies of elastic properties of carbon nanotubes (CNTs) and graphene layers (GLs) functionalized with simple molecules, radical and fragments. These studies are based on the \textit{ab initio} calculations in the framework of the density functional theory. This work provides novel predictions for the Young modulus of the functionalized CNTs and GLs, crucial for design of new composite materials. The calculations reveal that the functionalization of CNTs and GLs diminishes their Young modulus, but not to the extent that could hamper strong enforcement of the composite materials. New composite materials made by adding CNTs or graphene nanoribbons (GNRs) to various materials such as alloys, polymers, and metals are expected to enhance their properties, such as mechanical strength, electrical and thermal conductivity, and chemical stability. However, pristine CNTs and graphene flakes or ribbons are not soluble in water or in organic solvents and have tendencies to create bundles. This drastically limits its use in industrial applications like nano-composites. The chemical functionalization of CNTs allows for improved bonding of CNTs into the composite matrix, however, may weaken the strong stiffness of CNTs. Since the magnitude of this effect is generally unknown, we have undertaken theoretical studies of this issue.

We study the effects of functionalization of single wall CNTs (SWNTs) and GLs with simple organic molecules CH\textsubscript{n}, NH\textsubscript{n}, OH, and COOH, focusing on their Young modulus and Poisson ratio. We determine Young modulus by comparing the total energy of unstressed and stressed systems, e.g., applying the tensile stress along the symmetry axis of CNTs. The total energies are obtained from the \textit{ab initio} calculations in the framework of the density functional theory. The geometry has been optimized just allowing for deduction of the Poisson ratio.

Specifically, the calculated Young modulus of the (9,0) pure CNT equals 1.39 TPa and compares excellently to experimental finding (1.25 TPa) and previous theoretical works (0.8 – 1.5 TPa). Also Poisson ratio is in excellent agreement with experimental values (0.21 in both cases). The functionalization of the CNTs does reduce their Young modulus, roughly proportionally to the density of the attached molecules. For example, Young modulus of (9,0) CNT functionalized with OH is 0.78 TPa. However, the functionalized CNTs remain strong enough to be implemented as an enforcement of the new composite materials. We discuss also the differences between elastic properties of the functionalized CNTs and graphene layers.
A review will be presented on the status of the revolutionary UNCD film technology developed and patented at Argonne National Laboratory.

UNCD thin films are grown by microwave plasma or hot filament chemical vapor deposition, using a novel patented Ar/CH4 plasma chemistry. UNCD films exhibit 2-5 nm grain size (thus the trade name UNCD). UNCD films, can be integrated with other materials, such as metal oxide piezoelectric thin films, which enables a new generation of hybrid low-voltage/energy saving, piezoactuated, high-performance MEMS/NEMS devices.

UNCD films exhibit exceptional mechanical, tribological, chemical, electrical, electron emission, and biocompatible properties, which enable application to a broad range of system components and multifunctional devices from the macro to the nanoscale, namely: 1) low friction/energy saving coating for mechanical pump seals for the petrochemical and car industries, 2) RF MEMS/NEMS resonators and switches for wireless communications and radar systems, 3) NEMS devices; 4) low threshold electric field electron emission for field emission displays and other cold cathode devices; 5) Biomedical devices (e.g., bioinert coating for encapsulation of a microchip implantable in the retina to restore sight to people blinded by retina degeneration, coating for other implantable devices for treatment of vision problems (glaucoma and retina detachment), UNCD tribological coating with low friction and negligible wear for prosthesis – knees, hips, heart valves).

The UNCD film technology is commercialized by Advanced Diamond Technologies, a Company co-founded by O. Auciello and colleagues and spun-off from Argonne in 2004.

This work was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science, under contract DE-AC02-06CH11357 and DARPA under contracts MIPR 06-W238. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357
NANOCRYSTALLINE DIAMOND GROWTH IN A SURFACE-WAVE PLASMA

Masataka Hasegawa, AISTNanotube Research Center
Tsukuba Central 5, Tsukuba, Ibaraki, 305-8565, Japan
T: +81-29-861-5686, F: +81-29-861-4522, hasegawa.masataka@aist.go.jp
Kazuo Tsugawa, AISTNanotube Research Center
Masatou Ishihara, AISTNanotube Research Center
Jaeho Kim, AISTNanotube Research Center
Yoshinori Koga, AISTNanotube Research Center

Nanocrystalline diamond (NCD) films have been synthesized in a wide substrate temperature range using a surface-wave plasma in a microwave plasma chemical vapor deposition (MWPCVD) growth process. The temperature range of the diamond growth in the surface-wave plasma varies from below 100 °C to over 700 °C, and NCD films are grown on plastic substrate below 100 °C. This work reveals marked distinctions in growth characteristics from other CVD diamonds. On the basis of them, the NCD growth mechanism in the surface-wave plasma is discussed. We have deposited NCD films at substrate temperatures from 80 °C to 700 °C in a hydrogen-rich surface-plasma of a H2/CH4/CO2 (CH4 = CO2 = 5 vol. %) gas mixture in a MWPCVD reaction chamber. In the growth experiments, the temperature dependence of growth rates has been investigated. We have found less temperature sensitive, activation energy of growth rates of the NCD in this work than those in the others such as microcrystalline diamond (MCD), ultrananocrystalline diamond (UNCD) by MWPCVD, and UNCD by hot-filament CVD (HFCVD). In the surface-wave plasma, diamond crystals continuously re-nucleate through the CVD growth process even in a hydrogen-rich plasma, which leads to the NCD growth, while UNCD grows in a hydrogen-poor plasma. This result implies that the growth mechanism of NCD in the surface-wave plasma is different from that of CVD diamonds grown in other type plasmas. The temperature insensitive growth rate can be explained by gas-phase nucleation with substrate temperature. In addition, the continuous nucleation in the plasma with a constant rate gives an account of the crystal size distribution in the NCD film grown in the surface-wave plasma. Low temperature NCD growth even below 100 °C is also considered to be brought by it. The electron density and the electron temperature of the plasma are determined by using double-probe measurements. The plasma diagnosis reveals low electron temperatures of 2 - 3 eV in the process region, which is a distinctive characteristic of the surface-wave plasma. The low electron temperature is essential for the continuous renucleation of diamond in a hydrogen-rich plasma during the nanocrystalline diamond growth for a wide range of substrate temperature from under 100 to over 700 °C.
Diamond and the III-Nitride materials are two highly stable wide bandgap semiconductors with many extreme properties for operation under extreme conditions. GaN devices are usually based on heterostructures, enabling bandgap engineering, a feature not available in the case of diamond yet. Nevertheless diamond possesses intriguing thermal, mechanical, optical and electrochemical properties and may be able to complement Nitride devices in many ways. Examples already discussed extensively in the past are thermal management of power devices and electrochemical sensing in harsh environment.

To the diamond community the most interesting question may be: Where is the frontier in III-Nitride technologies and how can diamond fit in. The talk will therefore try at first to illustrate the capabilities of III-Nitride electronic devices under extreme conditions, especially at high temperature and in corrosive environment. High temperature large signal 1 MHz operation of GaN-based HEMTs has been possible for 50 hrs at 900 °C (in vacuum), demonstrating an extreme temperature stability of the system. GaN (and its ternaries AlGaN and InAlN) in direct contact with the environment is considered to be highly corrosion resistant. Nevertheless native oxides can be formed at high temperature or under anodic polarization in the liquid. In addition, in the presence of H-radicals, GaN and Ga-oxide can be reduced. Thus, their surface is still reactive.

Combining both materials in a common device structure means to grow either GaN on diamond or vice versa, where GaN is wurzite and diamond cubic. Thus, both use generally nucleation layers like AlN in the case of GaN growth and nanodiamond particle seeding or BEN on Si interlayers in the case of diamond growth. Especially critical is the high temperature diamond growth regime with high H-radical density in connection with the GaN surface reactivity.

Nevertheless, results are now available for both cases. GaN HEMT structures have been realized by direct growth on diamond. On the other hand, GaN HEMT structures have also been overgrown by nanodiamond films. Microwave HEMT performance has been demonstrated for both cases. Another interesting substrate is transparent sapphire for biochemical analytics. Here GaN and diamond structures can be grown side by side, enabling highly corrosion resistant ISFETs or electrochemical sensor arrays of high spacial resolution compatible with optical fluorescence analysis.

Following the overview, the talk will conclude discussing latest advancements in these fields.
Diamond has been central to a number of new and exciting breakthroughs in quantum and biological science for the past several years. The underpinning feature of diamond that makes this possible is the ability to host bright and optically stable colour centres at room-temperature. Of the hundred or so optical defects in diamond, the nitrogen-vacancy (NV) centre has attracted the most attention primarily for its photo-stability, spin polarised optical transition and long spin coherence time. By combining and exploiting each of these in different ways, landmark demonstrations have been made including single photon emission, spin qubits, magnetometry and bright fluorescent biolabels. Recent experiments show that the properties of NV centers in extremely small host diamond crystals are not the same as what is observed in larger or bulk crystals [1]. Here we report on methods for exploring this behaviour in more detail and understanding what gives rise to the changes in optical behaviour.

NOVEL BIOMOLECULAR DETECTION PRINCIPLES IN LIQUID ENVIRONMENT USING NANODIAMOND PARTICLES FOR CHEMICALLY-INDUCED LUMINESCENCE SWITCHING

Milos Nesladek, IMOMEC division IMEC, Hasselt University
Wetenschapspark 1, Diepenbeek, Limburg, 3500, Belgium
T: +32-11268833, F: +32-11268899, milos.nesladek@uhasselt.be

Vladka Rezacova, Faculty of Biomedical Engineering, Czech Technical University Prague, Czech Republic
Jan Šturza, Institute of Nuclear Physics, Academy of Sciences of the Czech Republic, v.v.i, Prague
Petr Cígler, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague
Miroslav Ledvina, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague

High biocompatibility, size ranging from ~ 5 nm, stable luminescence from its color centers and simple carbon chemistry for biomolecule grafting make nanodiamond (ND) particles attractive alternative to molecular dyes for drug-delivery. Here we present a novel method for remote monitoring of chemical processes in biological environments based on color changes from photoluminescence of NV centers in ND by driving the NV luminescence chemically. This method is based on alternation of the ND surface electric field developed by interacting molecules with the diamond surface. Our technique has advantages over FRET (Foerster Resonance Energy Transfer) for which the sensitivity to size scales as 1/r^6, allowing working with particles of molecules of size < 5 nm. In our method, due to 1/r^2 scaling, luminescence effects are observed up to ~ 20 nm of depth. This allows construction of optical chemo-biosensors operating in cells visible in classical confocal microscopes. We demonstrate this phenomenon on oxidized and hydrogenated ND as well as single crystal diamond implanted in nm-depth by N and containing engineered NV centers. The hydrogenation of NDs leads to quenching of luminescence related to negatively charged (NV-) centers and this way produces changes in the intensity ratio between NV- (636 nm) to neutral NV0 (575nm) centers. The working function of ND probe in biological environment is demonstrated by attaching charged polymers and other molecules on variously terminated ND surface including fluorinated diamond. Finally we discuss the ND size-effect enhancing the luminescence switching.
Diamond is an attractive semiconductor for applying to high-power electronic devices operated at a breakdown voltage larger than 10kV and a frequency higher than a few GHz. However, since ionization energies of the p and n-types dopants were as large as 0.37 and 0.57 eV, respectively, it was difficult to activate thermally hole and electron in diamond, which led to small carrier concentration at room temperature (RT). Such the large ionization energy of dopants originates from a relatively small permitivity of dimaond and limits the operation of diamond electron devices at RT. Thus, realization of high activation efficiency of both the B and P dopants at RT is a big challenge for manufacturing the diamond electron devices. Here, we named various phenomena caused by the large dopnat energy by a deep-dopant effect. In the present paper, we will show the electrical properties which were produced by the deep-dopant effect in the diamond. One is the electrical properties of the diamond pn-junction, and the other is the photoconductivity gain property of diamond ultraviolet (UV) detectors. The Ionized dopant and carrier profiles in the pn-junction of diamond with the P donor and the B acceptor are theoretically analyzed by simply solving a one-dimensional Poisson equation. The width of the depletion layer is around two times larger than that of the space-charge layer since there exists a transition region at the depletion layer edge. It is predicted that the static saturation property of a bipolar pnp-junction transistor is affected by the large width of the depletion layer. However, the deep-dopant effect is found to be weakened with increasing temperature. Photoconductivity gain (PG) and persistent photoconductivity (PPC) properties observed in the diamond UV detector are theoretically explained by solving rate equations which describe generation and recombination processes through the deep-dopant effect. Formation of one-sided pn-junction between the epilayer and substrate and slow hole capture rate of acceptor and hole trap levels provide accumulation of photo-generated hole in the epilayer, which produces the photocurrent larger than the ideal current value. The PPC current after turning off the deep ultraviolet light is interpreted as due to the slow hole capture rate of the acceptor and trap levels. Thus, the deep-dopant effect is concluded to be the characteristic future of dimand devices, which significantly affects the electronic and photonic properties of diamond devices.
SURFACE MODIFICATIONS OF NANODIAMONDS: TOWARDS ENHANCED CHEMICAL REACTIVITY

J.C. Arnault, CEA LIST, Diamond Sensors Laboratory
bâtiment 451, point courrier 45, Gif sur Yvette, 91191, FRANCE
T: (33) 1 69 08 71 02, F: (33) 1 69 08 78 19, jean-charles.arnault@cea.fr

Nanodiamonds (NDs) constitute excellent candidates for biomarkers, combining the ability to covalently graft biomolecules on their surface with the presence of stable coloured N-V centers in the diamond core. However, their surface chemistry presents a wide variety of oxidized groups as well as amorphous and / or graphitic carbon. An initial surface treatment is thus required to ensure high grafting yield and reproducibility. Different strategies were previously reported in the literature such as chemical treatments [1], annealing under controlled atmosphere [2-4] or RF-plasma exposures [5].

Two different ways to homogenize NDs surface terminations will be here presented:

(i) Surface hydrogenation of NDs using Microwave Plasma Chemical Vapour Deposition (MPCVD) will be first described [6]. The MPCVD reactor is connected to a UHV system equipped with XPS and AES. Kinetics of oxygen removal were followed by surface analysis of hydrogen treated NDs (H-NDs). Their enhanced surface reactivity was then confirmed using photochemical reaction with alkenes and a spontaneous coupling of aryldiazonium salts. These results strongly suggest similar electronic surface properties between bulk and nanodiamond materials.

(ii) Surface graphitisation of NDs is also a promising way for chemistry. Prato reaction was recently reported on such modified surfaces [7]. Our in situ study of the graphitisation of NDs using UHV annealing will be presented. The effects of the annealing parameters on the graphitization kinetics will be discussed. The best conditions were then reported using an ex situ furnace allowing the preparation of stable colloid suspension of graphitised NDs. These suspensions were characterised using DLS and Zeta potential measurements.

Our original approach combines in situ and ex situ experiments. First, surface modifications of NDs are monitored by electron spectroscopies (XPS, AES) to better understand the involved mechanisms. Samples are transferred without air exposure after the hydrogen plasma or the UHV annealing. Second, suitable conditions are used for ex situ treatment to modify larger quantities of NDs, usable for chemistry.

Biomimetic Diamond Interfaces for Protein Immobilization

Christoph E Nebel, Fraunhofer-Institute for Applied Solid State Physics
Tullastrasse 72, Freiburg, BW, 79108, Germany
T: +497615159291, F: +49761515971291, christoph.nebel@iaf.fraunhofer.de
René Hoffmann, Fraunhofer-Institute for Applied Solid State Physics (IAF), Freiburg 79108, Germany
W. Smirnov, Fraunhofer-Institute for Applied Solid State Physics (IAF), Freiburg 79108, Germany
Nianjun Yang, Fraunhofer-Institute for Applied Solid State Physics (IAF), Freiburg 79108, Germany
Oliver Ambacher, Fraunhofer-Institute for Applied Solid State Physics (IAF), Freiburg 79108, Germany

Protein-immobilization on solid electrodes is up-to-now very hard to realize without generation of unintended structural variations. The characterization of protein properties suffers severely from this fact as little variations of the folded protein structure causes dramatic variations of the electronic properties. In this presentation we introduce “diamond” with adjusted surface properties to interact with the redox protein “cytochrome c” without causing structural modifications of cyt c. The “adjustment” of the surface of boron-doped diamond for optimized protein interaction can be achieved by realizing electrochemically a mixed surface of hydrogen (H) and OH termination. We demonstrate that the mixed H/OH termination of the diamond surface mimics perfectly a “protein-like” surface. We have applied variously characterization methods to investigate the detailed properties of the diamond/protein interaction. We applied a combination of electrochemical techniques and atomic force microscopy (AFM) with single molecule resolution, XPS and phenyl-grafting to identify H-bonding on the surface of diamond. These experiments reveal that moderately OH-terminated diamond shows stable immobilization of Cytochrome c with high electron transfer activity, driven by a combination of electrostatic and hydrophobic interaction. This surface mimics natural binding partners, where coarse orientation is governed by electrostatic interaction of the protein’s dipole and hydrophobic interactions are involved in formation of the electron transfer complex. The results will be introduced and discussed in detail in this presentation.
Diamond is an outstanding material due to the combination of its mechanical, electrical, thermal, and optical properties. For scientific and technological applications, its high chemical and mechanical resilience, high surface stability, high thermal conductivity, and wide bandgap make diamond a versatile material in the fields of electrochemistry, heat spreaders, biological platform, sensor devices. However, its 3D-structuration, at the micro- or nanoscale, can be required to achieve MEMS or NEMS devices [1], optical systems [2-3] but also biomedical devices [4]. This structuration is currently achieved by top-down approaches, mostly based on mask etching. While these methods lead to well defined structures, the growth of a thick diamond layer and its post-processing, such as lithographic steps, are time and cost consuming. A bottom-up approach appears as more rational and flexible, by the use of nanodiamonds acting as growth seeds from which diamond layer can be grown. Technological challenge is thus to control the deposition and the organization of these nanodiamonds onto pre-structured substrates. Playing on chemical and electrostatic interactions between the substrate and the nanodiamonds, we developed in our lab versatile approaches to realize self-assembled diamond nanoparticles layers [5] [6]. By this mean, structured diamond coatings are achieved on 3D surfaces even when exhibiting high conformation, as well as on vertical wells and vias, and this has even become achievable on nanometric patterns. Furthermore, adding nanodiamonds to polymeric systems, 2D-organized nanodiamonds layers are obtained, allowing structuration at the nucleation stage, without any lithographic processing. In this study, we will show how nanodiamonds surface chemistry can be a powerful tool to achieve innovative structures for biomedical, sensing or optical systems.

FUNCTIONAL B-DOPED NANOCRYSTALLINE CVD DIAMOND FILMS

Ken Haenen, Hasselt University & IMEC vzw
Institute for Materials Research (IMO) & IMOMEC, Wetenschapspark 1, Diepenbeek, Limburg, 3590, Belgium
T: +32-11-268875, F: +32-11-268899, ken.haenen@uhasselt.be

Chemical Vapour Deposition (CVD) diamond is a versatile material with extreme mechanical, thermal, electronic and optical properties. The synthesis of ~ 100 nm to 200 nm thin nanocrystalline diamond (NCD) films by the microwave plasma enhanced CVD (MW PE CVD) technique has proved an enormous step forward for this material to show its potential in action [1]. The use of state-of-the-art seeding procedures based on water-based colloidal solutions of ultradispersed nanodiamond powder [2], allow the deposition of closed films of less than 100 nm on 2D as well as 3D structures, minimizing deposition times while retaining an acceptable surface roughness.

First, more light will be shed on the crucial influence of grain size and grain boundaries by studying the magnetotransport and (electro-)optical properties of heavily B-doped films on the metallic side of the metal-insulator transition. These films, 150 nm thick and grown with identical deposition conditions except for small variations in the methane-to-hydrogen ratio (1…5 %), show a very rich transport behaviour. Based on Matthiessen's rule, it is possible to construct a 2-phase model, separating the intra- and intergrain contributions for the resistivity and the mobility [3]. As all layers have a carrier concentration exceeding 10^{21} cm$^{-3}$, even superconducting properties can be detected when sufficiently cooled down [4]. The differentiation in the granular nature of the material, induced by the variation in the used methane-to-hydrogen ratio, is also reflected in the critical temperature describing the transition towards the superconducting state of zero resistance, an effect that is not fully understood to date.

From an application driven point of view, these layers are ideal candidates to be functionalized with high extinction coefficient dye molecules, to serve as new, high-quality absorbers for electrochemical solar cells [5]. To conclude, an introduction will be given to possible synthetic methods to attach Ru-based complexes to its surface via linker molecules. While the bonding mechanism of the attached molecules is investigated with XPS, the charge transfer characteristics of these NCD-based heterojunctions are assessed using highly sensitive, photocurrent-based spectroscopic techniques.

Due to advances in reaction design and deposition chemistry, a variety of diamond materials can now be deposited onto wafers up to 300 mm in size, with excellent thickness and property uniformity, enabling high-yield production of microdevices. In this presentation advances made over the past several years to enable thin, smooth diamond films for MEMS will be reviewed with emphasis on materials and microfabrication strategies needed to integrate diamond with other materials for MEMS devices. UNCD (ultrananocrystalline diamond) spans a family of thin smooth diamond materials. UNCD wafers serve to demonstrate the availability of the technology and to allow designers to integrate diamond into new process flows. NaDiaProbes, which are all-diamond AFM probes used for metrology and nanomanufacturing, are the first example of a commercially available diamond MEMS device that leverages wafer-scale processing of UNCD wafers using established microfabrication techniques. How ADT looks at wafer-scale production of UNCD-based MEMS devices going forward as well as our technology roadmap for UNCD-enabled products under development will be presented. Particular emphasis will be placed on the development of UNCD coatings and MEMS devices for RF devices, nanomanufacturing, and chem/bio-sensing related applications.
Diamond is a semiconductor with a wide band gap of 5.47 eV and possesses the highest thermal conductivity and the highest breakdown electric field among semiconductors. Therefore, diamond transistors are expected to exhibit the highest RF power capability. [H-terminated diamond FET] Hydrogen (H)-terminated diamond in air possesses holes on the surface at a concentration of ~1x10^{13} cm^{-2}. FET with a 0.1 um-gate length exhibited a drain current of 0.67 A/mm, cut-off frequencies for current gain (fT) and for power gain (fMAX) of 45, 120 GHz, respectively [1], and output power densities of 2.1 W/mm at 1 GHz [2]. Recently we clarified that NO2 adsorption on H-terminated surface leads to hole generation, and therefore, by using 300-ppm NO2 we obtained a hole concentration of ~9.5x10^{13} cm^{-2}. Further, by NO2-adsorption, we observed a ~1.5 fold increase in drain current and cut-off frequency of H-terminated FET [3]. [Ion implantation] So far, doping efficiency for ion-implanted diamond was quite low. However, by using high-pressure high-temperature (HPHT) annealing at conditions inside diamond stable phase, we demonstrated one-order improvement in the doping efficiency. With this technology, we fabricated B-implanted diamond FET, which showed a breakdown field of >1MV/cm and an operation at ~500 oC [4]. [Arsenic-doped n-type diamond] Impurity doping is still challenge for diamond. For p-type, boron becomes an acceptor with an ionization energy of 0.37 eV. For n-type, phosphor (P) is a donor with 0.58 eV. We grew arsenic-doped diamond using tertiarybutylarsine by microwave plasma CVD, and observed n-type conduction [5]. Its ionization energy was ~1.0 eV. [AlGaN/GaN HEMT on diamond] In nitride power transistors, the maximum output power is limited by thermal dissipation through their substrates (normally SiC). Diamond which possesses the highest thermal conductivity is the best material. The most difficult problem was that nitride has the wurtzite lattice and diamond has the diamond lattice. However, by using (111) diamond surface, we achieved single-domain (0001) AlN heteroepitaxy on (111) diamond. The AlGaN/GaN high-electron mobility transistor (HEMT) on diamond exhibited the lowest thermal resistance [6]. A part of this work was supported by the SCOPE Project. [1] K. Ueda, et al.: IEEE Electron Dev. Lett. 27 (2006) 570. [2] M. Kasu, et al.: IEE Electronics Lett. 41 (2005) 1249. [3] M. Kubovic, et al.: Appl. Phys. Express 2 (2009) 086502. [4] K. Ueda, et al.: Jpn. J. Appl. Phys. 49 (2010) 04DF16. [5] M. Kasu, et al.: Jpn. J. Appl. Phys. 49 (2010) 110209. [6] K. Hirama, et al.: Appl. Phys. Lett. 98 (2011) in press.
EFFECT OF DOPANTS ON DIAMOND (111), (110) AND (100) GROWTH RATES

Karin Larsson, Department of Materials Chemistry
Lägerhyddsvägen 1, Uppsala, 751 21, Sweden
T: +46 18 4713750, F: +46 18 513548, karin.larsson@mkem.uu.se
Zou Yiming, Department of Materials Chemistry

The growth of diamond films requires a perfect recognition of the parameters affecting the growth process. It is crucial to understand how these parameters will affect the growth on an atomic level. It has been observed that the growth rate will be enhanced for a small N/C or B/C ratio. One of the purposes with the here presented work was to theoretically (by using DFT) outline the thermodynamic effect of the B dopant on a rate limiting steps (i.e. surface H abstraction by gaseous H) in the CVD growth mechanism of diamond (100), (111) and (110), and to compare with earlier observations for N. As was the situation with substitutional N within the upper part of the diamond lattice, substitutional B was found to have an improved effect on the H abstraction energy. It changed from a slightly endothermic value to a strongly exothermic one. This was not the case with BHx (or NHx) co-adsorbed on the surface. To outline the effect of B (or N) on the growth rate, one has to consider the barriers of energies. Hence, we have also carefully calculated the barriers for the H abstraction process. The energy barriers of abstraction were shown to substantially decrease with B (or N) positioned in the second C layer, leading to an improvement of the abstraction reaction rate by approximately a factor of 3 vs 5. However, co-adsorbed BHx (or NHx) species did not result in any decrease in energy barrier. Hence, the dopants B and N is here shown to have a positive effect on the diamond growth rate when substitutionally positioned within the lattice, and not just adsorbed to it. (These observations were explained by electron transfer from the dopant to the surface bonds (N), or from the surface bonds to the dopant (B)).
EPITAXIAL GRAPHENE: GROWTH AND DOPING

Andrew T. S. Wee, National University of Singapore
Dept of Physics, 2 Science Drive 3, Singapore, 117542, Singapore
T: 65-65163333, F: 65-67774279, phyweets@nus.edu.sg
Wei Chen, Dept of Chemistry, National University of Singapore
Yuli Huang, Chiba University, Japan
Han Huang, Jiatao Sun, Xingyu Gao, Siew-Wai Poon, Eng-Soon Tok, Dept of Physics, National University of Singapore

The growth of high quality epitaxial graphene will facilitate the development and commercialization of graphene nanoelectronics devices, and the main substrate-based approaches are chemical vapour deposition (CVD) on metal catalytic thin films and thermal decomposition of silicon carbide (SiC). We have performed detailed studies using in situ scanning tunnelling microscopy (STM), synchrotron photoemission (PES) and density functional theory (DFT) calculations to investigate the structure of the various reconstructions of 6H-SiC (0001) prior to its thermal decomposition to form epitaxial graphene (EG) [1-3]. We show that the transition from monolayer EG to trilayer EG adopts a bottom-up growth mechanism [4], and x-ray absorption fine structure studies indicate an increase in disorder of Si atoms in the SiC substrate beneath the surface and the formation of Si clusters [5,6].

A major challenge in graphene-based devices is opening the energy band gap and doping. Molecular functionalization of graphene is one approach to modifying its electronic properties. Surface transfer doping by surface modification with appropriate molecular acceptors represents a simple and effective method to non-destructively dope graphene [7-9]. Surface transfer doping relies on charge separation at interfaces, and represents a valuable tool for the controlled and non-destructive doping of semiconductors and nanostructures at relatively low cost, thereby facilitating the development of hybrid organic-graphene nanoelectronics. Molecular self-assembly of bimolecular systems on epitaxial graphene and HOPG is demonstrated [10,11]. Surface transfer hole doping of epitaxial graphene using oxide thin films is also discussed [12].

Given its large carrier mobilities, high chemical stability, and two-dimensional structure, graphene holds significant potential for sensor applications in aqueous environments. In this work, we demonstrate the operation of arrays of micron-scale graphene solution-gated field effect transistors (G-SGFETs) fabricated from large-scale material. The performance of graphene produced by epitaxial growth on silicon carbide is compared directly to that of material fabricated by chemical vapor deposition on copper. For both cases, the high ambipolar mobilities and large interfacial capacitances in electrolyte environments lead to transconductive sensitivities which are far superior to state-of-the-art devices based on silicon or group III-nitride materials. However, the low frequency noise of these devices is strongly affected by specific processing methods and must be carefully considered. Furthermore, biosensing applications require the development of methods to impart specific chemical functionality without adversely affecting the carrier mobility. Here, we show that direct photografting and photopolymerization can be used to graft stable organic layers onto the active regions of the transistors. Scanning Raman spectroscopy is used to show that photopolymerization does not disrupt the basal plane conjugation of graphene and that the polymerization reaction propagates from existing defect sites. This technique thus offers the possibility of providing tailored chemical functionality without adversely affecting the electronic properties of graphene. Together, these results provide a strong indication that graphene will have the ability to far outperform existing technologies for highly sensitive and selective biosensing.
Graphene has become a major research focus since its discovery not only for its special electronic properties, but also for its potentials in spintronic applications. Owing to small spin-orbit interaction, electron spin in graphene has a long relaxation time. This special characteristic is very useful for using electron spin in graphene as information encoder. Nevertheless, the small spin-orbit interaction has the drawback that spin is difficult to control in graphene and this could be the main factor that hinders the development of graphene spintronics. In semiconductors, we have learnt through various studies in the past decade that spin-orbit interaction is a very useful tool for manipulating and generating spin polarization using electrical signals. So, for the development of graphene spintronics, there is an urgent need to look for alternative methods to manipulate and generate spin polarization. In this presentation, I will discuss the generation of spin polarized current in graphene using adiabatic quantum pumping. In adiabatic pumping a charge current can be generated without an external voltage bias by applying two a.c. electrical potentials. I will describe how we can use adiabatic pumping and ferromagnetic proximity effect to generate either pure spin current or completely spin polarized currents. Our estimation shows the charge current generated is in the nano-Ampere range. Our proposed method is useful for the development of graphene spintronic devices.
THE FORMATION AND STABILITY OF VACANCY, DISLOCATION, AND GRAIN BOUNDARY IN GRAPHENE

Gun-Do Lee, Dept. of Materials Science and Engineering, Seoul National University
Kwan-Ak Gu, Kwan-Ak Ro, Seoul, 151-742, Republic of Korea
T: 82-16-207-1058, F: 82-2-872-1058, gdlee@snu.ac.kr
Euijoon Yoon, Nong-Moon Hwang, Dept. of Materials Science and Engineering, Seoul National University
Young-Kuk Kim, Jisoon Ihm, Dept. of Physics, Seoul National University
Cai-Zhuang Wang, Kai-Ming Ho, Dept. of Physics, Iowa State University

In the previous study, we found that a double vacancy in graphene is reconstructed into a 555-777 composed of triple pentagons and triple heptagons [1]. The structural change from pentagon-octagon-pentagon (5-8-5) to 555-777 has been confirmed by recent experiments [2, 3] and the detail of the reconstruction process in TEM images is carefully studied by the first principles (FP) calculation. It is found that a 5-7-7-5 defect is an intermediate structure in the structural changes between two 555-777 defects and between two 5-8-5 defects. Pentagon-heptagon (5-7) pairs are also found to play an important role in the reconstruction of vacancy in graphene and single wall carbon nanotube [4,5]. We also present the recent results on the formation and development of dislocation in graphene by using tight-binding molecular dynamics simulation (TBMD) and FP methods. It is found that the coalescence of 5-7 pairs with vacancy defects develops dislocation in graphene and induces the separation of two 5-7 pairs. Our TBMD simulations also show that adatoms are ejected and evaporated from graphene surface due to large strain around 5-7 pairs. It is observed that an adatom wanders on the graphene surface and helps non-hexagonal rings change into stable hexagonal rings before its evaporation. We also present recent TBMD and FP results on grain boundary in graphene.

We present a review of our experiments on graphene transistors in its potential use as atomic film switching devices. We found that large transport energy gaps (>100 meV) can be fulfilled in dualgated bilayer graphene underneath a simple alumina passivation top gate stack, which directly contacts the graphene channels without an inserted buffer layer. With the presence of energy gaps, the electrical properties of the graphene transistors are significantly enhanced, as manifested by enhanced on/off current ratio, subthreshold slope, and current saturation. For the first time, complementary-like semiconducting logic graphene inverters are demonstrated that show a large improvement over their metallic counterparts. This result may open the way for logic applications of gap-engineered graphene.
Graphene based nanomaterials have attracted great attention recently. Understanding the structure-property relationship of graphene based nanomaterials is of importance for their practical applications. Chemical approach starting from carbon-rich precursors with well-defined structures is an effective strategy towards well-defined graphene based nanomaterials. Unique carbonaceous structures can thus be obtained through this approach. Besides their unconventional structures, the as-prepared carbonaceous nanomaterials perform interesting properties in various applications, especially in the energy-related areas. Their applications in lithium ion secondary batteries, solar cells, supercapacitors, and catalysis, will be discussed in the presentation.
The electrodes with the hierarchical nanoarchitectures could offer a huge increase in energy storage capacity. However, the ability to achieve such hierarchical architectures on a multiple scale still has remained a great challenge. Herein, we report a scalable self-assembly strategy to create bio-inspired hierarchical structures composed of functionalized graphene sheets to work as anodes of lithium-ion batteries. The resulting electrodes with novel multilevel architectures simultaneously optimize ion transport and capacity, leading to a high performance of reversible capacity of up to 1600 mAh/g, and 1150 mAh/g after 50 cycles. Importantly, the process to fabricate such hierarchical structures is facile, low-cost, green and scalable, providing a universal approach for the rational design and engineering of electrode materials with enhanced performance, and it may have utility in various applications, including biological scaffold, catalysis, and sensors.
Posters

Carbon-Based Nano-Materials and Devices

October 17-21, 2011

Suzhou, China
1. **Separation of Surfactants Functionalized Single-Walled Carbon Nanotubes via Gradient Agarose Gel Electrophoresis Method**
 Blazej Scheibe, et al., West Pomeranian University of Technology, Poland

2. **Synthesis of Structures with 0.1 to 1 nm in Size and with a Countable Number of Atoms**
 Tarso Benigno Ledur Kist, Federal University of Rio Grande do Sul, Brazil

3. **Resistive Memory Based on Graphene Oxide Prepared in Supercritical CO₂**
 Yuxiang Li, et al., Shandong University, China

4. **Dual Coordination Modes of Ethylene-Linked NP₂ Ligands in Cobalt(II) and Nickel(II) Iodides**
 Qingchen Dong, et al., California Institute of Technology, USA
This work presents the single-walled carbon nanotubes (SWCNTs) separation according to the electrical properties and diameter. The SWCNTs were synthesized via laser ablation process with Ni/Co catalysts. The raw material was purified from the residual catalysts particles through threefold refluxing processes in nitric acid. The oxidation debris was removed by multiple washings with sodium hydroxide and hydrochloric acid. Introduced surface functionalities were removed via high temperature vacuum annealing. The pristine sample was dispersed in 2% surfactant solution (3:2) of sodium dodecyl sulfate (SDS) and sodium cholate acid (SCA) at ultrasound bath. The functionalized sample was separated according to the electrical properties and diameter via gradient agarose gel electrophoresis (GAGE). Both applied surfactants are known to present selectivity toward one electronic type of tubes which allows metallic / semiconducting (M/S) separation. Additionally, the linear gradient agarose gel with different density of gel cells works like molecular sieve, which allows to separate the bundles and individual tubes according to their size and diameter. Recovered SWCNT fractions were purified from adsorbed agarose and surfactant impurities via weak acid etching and subsequent annealing. The acid etching was found as a crucial step of post-separation procedure. Therefore, many oxidizing agents were investigated and purification from agarose procedure was optimized. At each step of preparation SWCNTs were analyzed via Raman measurements. The diameter and M/S separation yield were investigated via Raman in RBM range and optical absorption spectroscopies, respectively.
SYNTHESIS OF STRUCTURES WITH 0.1 TO 1 NM IN SIZE AND WITH A COUNTABLE NUMBER OF ATOMS.

Tarso Benigno Ledur Kist, Federal University of Rio Grande do Sul
Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil
T: +55 51 3308 7618, F: +55 51 3308 7003, tarso@adufrgs.ufrgs.br

An basic molecular backbone was constructed using short chains of poly-lysine peptides together with cross-linking reagents. This basic structure worked as an anchor around which an exact number of monodisperse dendrites were covalently bounded. The exact number N of atoms (predominantly C, H, and N) is given by the following expression: N = n*2exp(G+2). Where n is number of anchoring sites on the poli-lysine backbone and G is the generation of the dendrites used.
RESISTIVE MEMORY BASED ON GRAPHENE OXIDE PREPARED IN SUPERCritical CO₂

Wenjie Yin, School of Physics, Shandong University
27 Shandanan Road, Jinan, Shandong, 250100, China
T: 86-531-88364329, F: 86-531-88564886, yxli@sdu.edu.cn
Bo Li, School of Physics, Shandong University
Lei Wang, School of Physics, Shandong University
Yuting Hu, School of Physics, Shandong University
Yuxiang Li, School of Physics, Shandong University

In this study, the authors report a novel method to prepare graphene oxide (GO) by intercalating, exfoliating, and oxidating layered graphite in supercritical CO₂ (scCO₂) system with the assisted intercalating of surfactant and oxidation of H₂O₂. First, graphitic material, surfactant, and H₂O₂ were put into a scCO₂ chamber with magnetic stirring at a certain temperature and pressure for a period of time and then rapidly depressurizing the fluid at a fluid release rate sufficient for effecting exfoliation of the graphitic material to obtain the nano graphene platelets (NGPs). In order to exfoliate and oxidate the graphite completely, the above process repeated three times. Thermogravimetric analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy results indicated the successful preparation of GO platelets. Atomic force microscopy (AFM) was used to measure thickness and the structure of produced GO. GO films dissolved in organic solvent or water were deposited on SiO₂/Si wafers by spin coating at 1000-3000 RPM to measure the film uniformity. AFM height profiles revealed that the film is very uniform, the thickness ranging from 1-2 layers to multilayers. And the very thin films can be lifted off to form uniform membranes that can be free-standing or transferred onto any substrates. In order to verify the performance of resistive memory based on GO, an Al/GO/ITO device with good reliable and reproducible resistive switching behaviors was fabricated. Electrical measurements based on the Al/GO/ITO structure device showed an on/off ratio more than 10³, low set/reset voltage, and excellent data retention. The GO memory is also fabricated on a flexible substrate and the measuring results demonstrated no degradation in switching property when the substrate is bent down to the radius less than 1cm, indicating that the GO memory is an excellent candidate to be a memory device for future flexible electronics.
DUAL COORDINATION MODES OF ETHYLENE-LINKED NP2 LIGANDS IN COBALT(II) AND NICKEL(II) IODIDES

Qingchen Dong,†‡ Michael J. Rose,†* Wai-Yeung Wong,‡* and Harry B. Gray†*
†Beckman Institute
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125 USA

‡Institute of Molecular Functional Materials and Department of Chemistry and Centre for Advanced Luminescence Materials, Hong Kong Baptist University, Waterloo Road, Hong Kong (P.R. China)

Complexes containing late transition metals bound to phosphine donors have found application in a wide variety of industrial transformations and synthetic methodologies. Phosphorus ligands are of interest because they stabilize low oxidation states (MII/I) that are active species in many catalytic cycles, and cobalt phosphines promote ethylene polymerization1 and hydroformylation reactions.2-4 In the case of mixed phosphorus- and nitrogen-containing ligands, the additional functionality of an N-donor can allow the metal center to access a greater range of oxidation states than with phosphines alone. We have investigated NP2 complexes of two transition metals in the same oxidation state (NiII and CoII) that typically adopt different coordination geometries (square planar and tetrahedral, respectively). Here we report that NP2 ligands with para-substituted benzylamines and aniline as N-substituent can adopt dual binding motifs when bound to CoII, designated NP2 and NP2, where the donor atoms are underlined. We have explored the solid and solution state properties of the CoII complexes by X-ray, SQUID and EPR methods. The corresponding NiII complexes are all square planar with NP2 coordination.
Chihaya Adachi
Kyushu University
OPERA and Center for Future Chemistry
744 Motooka
Nishi
Fukuoka, 819-0395
Japan
Phone: 81-92-802-6920
Fax: 81-92-802-6921
Email: adachi@cstf.kyushu-u.ac.jp

Priscilla Ang
Research Student
National University of Singapore
3 Science Drive 3
Singapore, 117543
Singapore
Phone: 65-9655-5996
Fax: 65-6779-1691
Email: priscilla_ang@nus.edu.sg

Jean Charles Arnault
CEA LIST
Diamond Sensors Laboratory
Batiment 451, Point Courrier 45
Gif Sur Yvette, 91191
France
Phone: 33-1-6908-7102
Fax: 1-69-08-7819
Email: jean-charles.arnault@cea.fr

Orlando Auciello
Senior Scientist
Argonne National Laboratory
Materials Science Division; Bldg. 212
9700 South Cass Avenue
Argonne, IL 60439
USA
Phone: 1-630-252-1685
Fax: 1-630-252-4798
Email: auciello@anl.gov

Qiaoliang Bao
National University of Singapore
Department of Chemistry
National University of Singapore
3 Science Drive 3
Singapore, 117543
Singapore
Phone: 65-9758-6866
Fax: 65-6516-4778
Email: chmbq@nus.edu.sg

Magdalena Birowska
University of Warsaw
University of Warsaw
Krakowskie Przedmiescie 26/28
Warsaw, 00-927
Poland
Phone: 48-22-5532-384
Fax: 48-22-5532-333
Email: magda.birowska@gmail.com

Kwok Chan
City University of Hong Kong
Physics and Materials Science Dept.
Tat Chee Avenue
Hong Kong SAR, China
Phone: 34-42-7814
Fax:
Email: apkschan@cityu.edu.hk

Wei Chen
National University of Singapore
3 Science Drive 3
Singapore, 117543
Singapore
Phone: 65-6516-2921
Fax: 65-6777-6126
Email: chmcw@nus.edu.sg

Wei Chen
KAUST
KAUST Mail Box 1854
Thuwal, Jeddah, 23955-6900
Saudi Arabia
Phone: 009662808748
Fax:
Email: wei.chen@kaust.edu.sa

Xiaodong Chen
Nanyang Technological University
Sch. of Materials Science & Engineering
50 Nanyang Avenue
Singapore, 639798
Singapore
Phone: 65-65-13-7350
Fax: 65-67-90-9081
Email: chenxd@ntu.edu.sg
Yongsheng Chen
Professor
Nankai University
Wenjin Road 94
Tianjin 300071,
China
Phone: 86-22-2350-0693
Fax: 86-22-2350-2749
Email: yschen99@nankai.edu.cn

Lifeng Chi
Physikalisches Institute, WWU Muenster
Wilhelm-Klemm-Strasse 10
Muenster, 48149
Germany
Phone: 49-251-833-3651
Fax: 49-251-833-3602
Email: chi@uni-muenster.de

Danilo Demarchi
Politecnico Di Torino
Corso Duca Degli Abruzzi 24
Torino, TO, 10129
Italy
Phone: 39-11-090-4122
Fax: 39-11-090-4099
Email: danilo.demarchi@polito.it

Qingchen Dong
Hong Kong Baptist University
Department of Chemistry
Hong Kong Baptist University
Kowloon Tong
Hong Kong, Hong Kong
Hong Kong
Phone: 53780711
Fax:
Email: 08467064@hkbu.edu.hk

Chris Fell
Director
Australian National Fabrication Facility
24/51 William Street
Double Bay, NSW 2028
Australia
Phone: 61-29-327-4962
Fax: 61-29-328-0649
Email: c.fell@unsw.edu.au

Hugues Girard
CEA LIST
CEA Saclay
Diamond Sensors Laboratory
Bat. 451, PC 45
Gif Sur Yvette, 91191
France
Phone: 33-1-69-08-4760
Fax: 33-1-69-08-7819
Email: hugues.girard@cea.fr

Jinghua Guo
Lawrence Berkeley National Laboratory
1 Cyclotron Road
Mail Stop 6R2100
Berkeley, CA 94720
USA
Phone: 1-510-495-2230
Fax:
Email: jguo.lbl.gov

Tressa Gaffaney
Conference Registrations Coordinator
Engineering Conferences International
32 Broadway
Suite 314
New York, NY 10004
USA
Phone: 1-212-514-6760
Fax: 1-212-514-6030
Email: tressa@engconfintl.org

Ken Haenen
PhD
Hasselt University & IMEC Vzw
Institute for Materials Research (IMO)
& IMOMEC
Wetenschapspark 1
Diepenbeek, 3590
Belgium
Phone: 32-11-268-875
Fax: 32-11-268-899
Email: ken.haenen@uhasselt.be

Masataka Hasegawa
Team Leader
AIST
Tsukuba Central 5
Higashi 1-1-1
Tsukuba, Ibaraki, 305-8565,
Japan
Phone: 81-29-861-5686
Fax: 81-29-861-4522
Email: hasegawa.masataka@aist.go.jp
Hisao Ishii
Chiba University
1-33 Yayoi-cho
Image-ku
Chiba-shi
Chiba, 263-8522
Japan
Phone: 81-43-290-3524
Fax: 81-43-290-3524
Email: ishii130@faculty.chiba-u.jp

Makoto Kasu
NTT Basic Research Laboratories
3-1 Morinosato-Wakamiya
Atsugi
Kanagawa, 243-0198
Japan
Phone: 81-46-240-3451
Fax: 81-46-240-4729
Email: kasu.makoto@lab.ntt.co.jp

Esko Kauppinen
Prof. Dr. (Physics)
Aalto University
Puumienkuja 2
Espoo, FI-02150
Finland
Phone: 358405098064
Fax:
Email: esko.kauppinen@aalto.fi

Tarso Kist
Federal University of Rio Grande Do Sul
Av. Bento Goncalves 9500
Porto Alegre RS, 91501-970
Brazil
Phone: 55-51-3308-7618
Fax: 55-51-3308-7003
Email: tarso@adufrgs.ufrgs.br

Hagen Klauk
Max Planck Institute for Solid State Research
Heisenbergstrasse 1
Stuttgart 70569, Germany
Phone: 49-711-689-1401
Fax: 49-711-689-1472
Email: H.Klauk@fkf.mpg.de

Erhard Kohn
Dir. of Institute (retired)
Ulm University
Institute of Electron Devices & Circuits
Albert-Einstein-Allee 45
Ulm, 89081
Germany
Phone: 49-731-5026151
Fax: 49-731-5026155
Email: erhard.kohn@uni-ulm.de

Yasuo Koide
Group Leader
National Institute for Materials Science
Namiki 1-1
Tsukuba
Ibaraki, 305-0044
Japan
Phone: 81-29-860-4311
Fax: 81-29-860-4005
Email: Koide.yasuo@nims.go.jp

Nghi Lam
Editor/Applied Physics Letters
Argonne National Laboratory
Bldg. 203, R-127
9700 S. Cass Ave.
Argonne, IL 60439-4843
USA
Phone: 1-630-252-4200
Fax: 1-630-252-4973
Email: nqlam@apl.anl.gov

Karin Larsson
Prof.
Uppsala University
Materials Chemistry Department
Lagerhyddsvagen 1
Uppsala, 751 21
Sweden
Phone: 46-18-4713750
Fax: 46-18-513548
Email: karin.larsson@mkem.uu.se

Cheol Jin Lee
Professor
Korea University
Anam-Dong
Seongbuk-Gu
Seoul, 136-713
Korea
Phone: 82-2-3290-3216
Fax: 82-2-921-4722
Email: cjlee@korea.ac.kr
Gun-Do Lee
Professor
Seoul National University
Kwan-ak Gu Kwan-ak Ro
Dept. of Materials Science and Engineering
Seoul National Univ.
Seoul, 151-742
Korea
Phone: 82-16-207-1058
Fax: 82-2-875-0679
Email: gdlee@snu.ac.kr

Shuit-Tong Lee
Professor
City University of Hong Kong
Tat Chee Avenue
Kowloon, Hong Kong
China
Phone: 852-2784-4204
Fax: 852-2784-4696
Email: apannal@cityu.edu.hk

Karl Leo
TU Dresden
Mommsenstr. 13
Dresden, 01062
Germany
Phone: 4935146334389
Fax:
Email: leo@iapp.de

Yuxiang Li
Shandong University
School of Physics
27 Shandanann Road
Jinan, Shandong, N/A 250100
China
Phone: 86-531-8836-4329
Fax: 86-531-8856-4886
Email: yxli@sdu.edu.cn

Lei Liao
Wuhan University
Luojia Shan, Wuhan university
Physics department
wuhan, AL 430073
China
Phone: 86-27-68752567
Fax:
Email: liaolei@whu.edu.cn

Chwee Teck Lim
National University of Singapore
Division of Bioengineering
9 Engineering Drive 1
Singapore 117576,
Singapore
Phone: 65-6-516-7801
Fax: 65-6-779-1459
Email: ctlim@nus.edu.sg

John Chih-Chiang Lin
Product Specialist
AIXTRON Ltd.
Buckingway Business Park
Anderson Road
Swavesey
Cambridge, CB24 4FQ
United Kingdom
Phone: 00441223519444
Fax: 00441223519888
Email: b.harpejs@aixtron.com

Yunqi Liu
Professor
Chinese Academy of Sciences
No.2, 1st North Street, Zhongguancun
Beijing, 100190
China
Phone: 86-10-6261-3253
Fax: 86-10-6255-9373
Email: liuyq@iccas.ac.cn

Zhuang Liu
Soochow University
199 Ren-ai Road, Building 910
Room 405
Suzhou, Jiangsu 215123
China
Phone: 86-512-6588-2036
Fax: 86-512-6588-2846
Email: zliu@suda.edu.cn

Kian Ping Loh
Professor
National University of Singapore
Department of Chemistry
3 Science Drive 3
Singapore, 117542
Singapore
Phone: 65-9827-1029
Fax: 65-6779-1691
Email: chmlohkp@nus.edu.sg
Steven Louie
Professor of Physics
University of California at Berkeley
Physics Department
366 LeConte Hall #7300
Berkeley, CA 94720-7300
USA
Phone: 1-510-642-1709
Fax: 1-510-643-9473
Email: sglouie@berkeley.edu

Zheng-Hong Lu
University of Toronto
184 College Street
Room 140
Toronto, ON M5S 3E4
Canada
Phone: 416-978-1472
Fax: 416-978-4155
Email: zhenghong.lu@utoronto.ca

Dongge Ma
Prof
Chinese Academy of Sciences
Chang Chun Institute - Applied Chemistry
chengehuan renmin street 5625
Changchun, 130022
China
Phone: 0086-431-85262357
Fax: 0086-431-85262873
Email: mdg1014@ciac.jl.cn

Yuguang Ma
Jilian University
State Key Lab for Supramolecular
Structure and Materials
Qiankun Road 2699
Jilin, 130012
Peoples Republic of China
Phone: 431-8516-8480
Fax: 431-8519-3421
Email: ygma@jl.edu.cn

Karolina Milowska
Ph.D, student
University of Warsaw
Warsaw University
Krakowskie Przedmie?cie 26/28
Warsaw, 00-927
Poland
Phone: 48-22-5532-244
Fax: 48-22-5532-333
Email: karolina.milowska@gmail.com

Masato Miyake
AIXTRON KK
9F, Daiwa Shinagawa North Building
i-8-11 Kitashinagawa
Shinagawa-ku
Tokyo, 140-0001
Japan
Phone: 0081357810931
Fax: 0081357810940
Email: h.lorey@aixtron.com

Koki Miyazono
TASC Graphene Division
Higashi 1-1-1
AIST, Sangyogijutsu-sogo-kenkyujo
Tsukuba-central Dai5, 5-2 Tou
Tsukuba, Ibaraki, 3050046
Japan
Phone: 81298613814
Fax:
Email: miyazono@tasc-nt.or.jp

Hrudya Nair
Ms.
University of Twente, Catalytic Processes and Materials
Faculty of Science and Technology
CPM
P.O. Box 217
Enschede, 7500AE
The Netherlands
Phone: 31-53-489-3033
Fax: 31-53-489-4683
Email: H.Nair@utwente.nl

Christoph Nebel
Fraunhofer Institut for Applied Solid State Physics
Tullastrasse 72
Freiburg BW, 79108
Germany
Phone: 49-76-1515-9291
Fax: 49-76-1515-97-1291
Email: christoph.nebel@iaf.fraunhofer.de

Milos Nesladek
Prof.
Hasselt University, IMOMEC
IMEC Division
Wetenschapspark 1
Diepenbeek
Limburg, 3500
Belgium
Phone: 32-11-268-833
Fax: 32-11-268-899
Email: milos.nesladek@uhasselt.be
Engineering Conferences International
Participants List
Carbon-Based Nano-Materials and Devices
Suzhou, China
10/16/2011 through 10/21/2011

Songfeng Pei
Institute of Metal Research
Wenhua Rd. 72#
Shenhe District
Shenyang, 110016
China
Phone: 8602483978689
Fax:
Email: sfpei@imr.ac.cn

Haibing Peng
University of Houston
Physics Department
Texas Center for Superconductivity
Houston, TX 77204
USA
Phone: 1-713-743-8233
Fax: 1-713-743-3589
Email: haibingpeng@uh.edu

James Rabeau
Macquarie University
North Ryde
Sydney NSW, 2109
Australia
Phone: 61-29-850-4161
Fax: 61-29-850-4161
Email: james.rabeau@mq.edu.au

Wencai Ren
Professor
Chinese Academy of Sciences
Institute of Metal Research
72 Wenhua Road
Shenyang, Liaoning 110016
China
Phone: 86-24-2397-1472
Fax: 86-24-2390-3126
Email: wren@imr.ac.cn

Blazej Scheibe
MSc.
West Pomeranian University of Technology
Borówkowa 15
Szccecin, N/A 71-034
Poland
Phone: +48-0723066083
Fax:
Email: bscheibe@zut.edu.pl

Tsun-Kong Sham
Professor
University of Western Ontario
Department of Chemistry
Chemistry Building, ChB 119
London, ON N6A 5B7
Canada
Phone: 519 661-2111 x86341
Fax: 519 661-3022
Email: tsham@uwo.ca

Tsun-Kong Sham
Professor
University of Western Ontario
Department of Chemistry
Chemistry Building, ChB 119
London, ON N6A 5B7
Canada
Phone: 519 661-2111 x86341
Fax: 519 661-3022
Email: tsham@uwo.ca

Ian Sharp
Walter Schottky Institut
Am Coulombwall 3
Garching, Bavaria 85748
Germany
Phone: 49-89-289-12889
Fax: 49-89-289-12737
Email: sharp@wsi.tum.de

Jignasa Solanki
S.V.National Institute of Technology
Chemical Engineering Department
Surat, Gujarat 395 007, 395007
India
Phone: 91-26-1220-1642
Fax: 91-26-1222-7334
Email: sjn@ched.svnit.ac.in

Martin Stutzmann
Professor
Technical University of Munich
Walter Schottky Institute
Am Coulombwall 4
Garching, Bavaria 85748,
Germany
Phone: 49-89-2891-2760
Fax: 49-89-2891-2737
Email: stutz@wsi.tum.de

Xuhui Sun
Professor
Soochow University
Institute of Functional Nano & Soft
Materials (FUNSOM)
199 Ren-Ai Road, Suzhou Industrial Park
Suzhou, Jiangsu 215123
China
Phone: 86-512-6658-0943
Fax: 86-512-6658-2846
Email: xhsun@suda.edu.cn
Jun Takeya
ISIR, Osaka University
8-1 Mihogaoka
Ibaraki
Osaka, 567-0047
Japan
Phone: 81-6-6879-8400
Fax: 81-6-6879-8404
Email: takeya@sanken.osaka-u.ac.jp

Ye Tao
National Research Council Canada
1200 Montreal Road M-50
Ottawa, Ontario, K1A 0R6
Canada
Phone:
Fax:
Email: ye.tao@nrc-cnrc.gc.ca

Yu-Tai Tao
Distinguished Research Fellow
Academia Sinica
Institute of Chemistry
128 Academia Road, Section 2
Nankang, Taipei 115, Taiwan
Phone: 886-2-27895880
Fax: 886-2-27831237
Email: ytt@chem.sinica.edu.tw

Kazuhiro Tsukagoshi
MANA, National Institute for Materials Science (NIMS)
Namiki 1-1
Tsukuba, Ibaraki 305-0044
Japan
Phone: 81-29-860-4894
Fax: 81-29-860-4706
Email: TSUKAGOSHI.Kazuhiro@nims.go.jp

Nobuo Ueno
Professor
Chiba University
1-33 Yayoi-cho, Inage-ku
Chiba-shi
Chiba, 263-8522
Japan
Phone: 81-43-290-3447
Fax: 81-43-207-3896
Email: uenon@faculty.chiba-u.jp

Alina Veligura
University of Groningen
Nijenborgh 4
Groningen, 9747AG
The Netherlands
Phone: 31-50-363-4919
Fax: 31-50-363-4879
Email: a.veligura@rug.nl

A. L. Roy Vellaisamy
City University of Hong Kong
Dept. of Physics and Materials Science
City University of Hong Kong
Kowloon Tong
Kowloon Tong, Hong Kong
Phone: 852-34-42-2729
Fax: 852-34-42-0538
Email: val.roy@cityu.edu.hk

Eyassu Woldezenset
Louisiana State University and Southern University
Mechanical Engineering
2508 Patrick Taryor Hall
Baton Rouge, LA 70810
USA
Phone: 1-225-578-5900
Fax: 1-225-578-5924
Email: woldesen@me.lsu.edu

Raymond Wong
Chair Professor
Hong Kong Baptist University
Department of Chemistry
Hong Kong Baptist University
Waterloo Road, Kowloon Tong
Hong Kong, Hong Kong
Phone: 852-3411-7074
Fax: 852-3411-7348
Email: rwywong@hkbu.edu.hk

Zhenqi Wu
toray fiber research company
500 Ziri Road
Zizhu Science-Based Industrial Park
Minhang District, Shanghai, China
Shanghai, China 200241
China
Phone: 86-21-542928-8303
Fax:
Email: wu_zhenqi@toray.cn
Mingsheng Xu
Zhejiang University
Dept. of Polymer Science & Engineering
Polymer Building
Zheda Road #38
Hangzhou, Zhejiang, 310027
China
Phone: 86-571-8795-2557
Fax: 86-571-8795-3733
Email: msxu@zju.edu.cn

Shihe Yang
Hong Kong Univeristy Science & Technology
Department of Chemistry
The Hong Kong University of Science and
Clear Water Bay, Kowloon,
Hong Kong
Phone:
Fax:
Email: chsyang@ust.hk

HONGJUN ZENG
Advanced Diamond Technologies, Inc
48 East Belmont Drive
Romeoville, IL 60446
USA
Phone: 1-815-768-2158
Fax:
Email: zeng@thindiamond.com

Nengli Zhang
NASA Glenn Research Center - Ohio Aerospace Institute
MS: 77-5, NASA Glenn Research Center
21000 Brookpark Road
Cleveland, OH 44135
USA
Phone: 1-216-433-8750
Fax: 1-216-433-8050
Email: nengli.zhang-l@nasa.gov

Linjie Zhi
National Center for Nanoscience and Technology
Beiyitiao 11
Zhongguancun
Beijing, 100190
China
Phone: 86-10-8254-5578
Fax: 86-10-8254-5578
Email: zhilj@nanoctr.cn

Participants Listed

Participants Listed 75
Engineering Conferences International

Engineering Conferences International (ECI) is a not-for-profit global engineering conferences program that has served the engineering/scientific community since 1962 as successor program to Engineering Foundation Conferences. ECI has received recognition as a 501(c)3 organization by the U.S. Internal Revenue Service and is incorporated in the State of New York as a not-for-profit corporation.

The program has been developed and is overseen by volunteers both on the international Board of Directors and international Conferences Committee. More than 1,400 conferences have taken place to date. The conferences program is administered by a professional staff and the conferences are designed to be self-supporting.

ECI Mission

To serve the engineering/scientific community with international, interdisciplinary, leading edge engineering research conferences

ECI Purposes

The advancement of engineering arts and sciences by providing a forum for the discussion of advances in the field of science and engineering for the good of mankind by identification and administration of international interdisciplinary conferences

To work with engineering, scientific and social science societies and the interested general public to jointly sponsor conferences and to take other actions that will foster complementary programming.

To initiate conferences that will have a significant impact on engineering education, research practice and/or development.

ECI Encouragement of New Conference Topics

The ECI Conferences Committee invites you to suggest topics and leaders for additional conferences and encourages you to submit a proposal for an ECI conference.

Ideally, proposals should be submitted from 18 to 24 months in advance of the conference although the staff can work on a shorter timeline.

The traditional format for an ECI conference is registration Sunday afternoon with technical sessions held each morning and evening through Thursday or Friday noon. Afternoons are used for informal gatherings, poster sessions, field trips, subgroup meetings and relaxation. This format has served well to build important professional networks in many areas.

ECI welcomes proposals for shorter conferences and for conferences which span weekends in order to reduce the number of working days participants are away from their offices.
ECI Works With You

ECI works with conference chairs in two complementary ways. First, an experienced member of the Conferences Committee acts as your technical liaison from the proposal stage through the conference itself. He or she is always available to consult with you on any conference issue.

Second, after your proposal has been approved by the Conferences Committee, the ECI staff will assume responsibility for the administration of the conference.

Your primary responsibilities will be recruiting the organizing committee, developing the technical program and securing third-party funding necessary to support the travel of key speakers.

The responsibilities of ECI's "full service" staff include -- but are not limited to -- the following:

- Recommend, negotiate, contract and make substantial deposits for housing, meals, meeting space, A/V equipment and tours.
- Maintain web sites for the conference and for submission of abstracts.
- Publicize via electronic and print media.
- Administer all finances including grants, contributions and purchase orders. (ECI makes grant funds available as soon as a grant is approved.) There is no need for chairs to set up a conference bank account or file tax returns for their conference.
- Process all applications and registrations.
- Produce bound program/abstracts book.
- Contract for the publication of print or electronic proceedings, if any.
- Provide on-site staff during the conference.

For more information, please contact the ECI Director at Barbara@engconfintl.org